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The scattering of a scalar plane wave by a totally reflecting sphere (hard-
core potential) at high frequencies is treated by a modified Watson transforma-
tion. The behavior of the solution both in the near and far regions of space is
discussed, as well as the accuracy and domain of applicability of the WKB ap-
proximation and classical diffraction theory. It is shown that different trans-
formations are required in the forward and backward half-spaces, and corre-
sponding integral representations for the primary wave are derived. The
transformations are rigorously proved and the convergence of the residue
series Is discussed. In the shadow region, the physical interpretation of the
complex angular momentum poles in terms of surface waves is in agreement
with Keller’s geometrical theory of diffraction. In the lit region, sufficiently
far from the shadow boundary, the WKB expansion for the wave function is
confirmed up to the second order. On the surface of the sphere, Kirchhoff’s ap-
proximation is accurate, except in the penumbra region, where the behavior
is described by Fock’s function. The diffraction effects in the neighborhood
of the shadow boundary are investigated and the corrections to classical dif-
fraction theory are obtained. The shift of the shadow boundary is evaluated.
The expression for the wave function in the Fresnel-Lommel region is derived
and applied to the discussion of the Poisson spot and the behavior near the
axis. The total seattering amplitude is evaluated for all angles, including the
neighborhood of the forward and backward directions. The corrections to the
forward diffraction peak and the transition to the region of geometrical re-
flection are discussed. The modified Watson transformation is also applied
directly to the scattering amplitude. The connection between representations
valid in different regions is established.

I. INTRODUCTION

The problem to be considered is the scattering of a scalar plane wave by a
totally reflecting sphere at high frequencies. This means not only that ke > 1,
but also that (ka)!® >> 1, where k is the wave number and a is the radius of the
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sphere. It will be attempted to make the treatment both rigorous and compre-
hensive, including a discussion of the near and far regions and a comparison of
the results with the WKB approximation and classical diffraction theory.

The wave function can be interpreted either as the velocity potential of sound
waves, corresponding to an acoustically soft sphere, or as the Schrédinger wave
function in nonrelativistic quantum mechanies, in which case it corresponds to
a hard-core potential. In both cases, the boundary condition is the vanishing of
the wave function on the surface of the sphere. There is no difficulty in extending
the treatment to a vector wave field, so as to represent electromagnetic scattering
from a perfectly conducting sphere.

This is perhaps the simplest problem involving a finite size scatterer, and its
exact solution in the form of a partial-wave series has been known for a long
time. It is also well known that this form of the solution becomes useless at high
frequencies, because of the large number of terms one would have to keep in
order to get a good approximation.

The way out of this difficulty was proposed by Watson (7), who transformed
the partial-wave series into a “residue series,” which is rapidly convergent at
high frequencies. Several applications of this transformation to the theory of
radio wave propagation around the Earth were made by Van der Pol and Brem-
mer (2).

Watson’s procedure applies only to the shadow region behind the sphere, and
not to the lit region. An extension of the treatment to the lit region was made
by Fock (3) and later reformulated by Franz (4, §).

As will be shown in Section VI, this treatment is also incomplete, for it does
not apply to the backward half-space. A certain amount of confusion seems to
exist in the literature concerning the application of Watson’s transformation in
the lit region.

Recently, interest in Watson’s transformation has been renewed, in connection
with Regge’s work on complex angular momentum in potential scattering and
its applications to elementary-particle physics (6).

In view of this, as well as of its intrinsic interest, a reexamination of the
totally reflecting sphere problem seems warranted. Since this is the simplest
problem of its kind, it should also serve as a model for the extension to more
complicated situations, such as different refractive indices and different shapes.
The case of a transparent sphere, which has numerous applications to optics
and nuclear physics, will be treated in a subsequent paper.

In the present work, Watson’s transformation will be reformulated in such a
way that it becomes applicable both in the forward and in the backward half-
space, and in particular in the neighborhood of the forward and backward
directions. For this purpose, new integral representations of the primary wave
will be derived in Section II.
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A rigorous proof of Watson’s transformation and the convergence of the
residue series will be given in Sections IIT and TV. The physical interpretation
of the results in the shadow region will be discussed in Section V. In Section VI,
the nearby lit region, excluding the neighborhood of the shadow boundary, will
be considered. It will be shown that the solution in this region agrees with the
WKB approximation up to the second order.

The diffraction effects arising in the transition between lit and shadow regions
will be examined in Section VII, where the results derived from the exact solu-
tion will be compared with classical diffraction theory. The shift of the shadow
boundary will also be investigated.

At greater distances from the sphere, but still in the near region, the wave
function resembles the classical solution to the problem of diffraction by a
circular dise, as will be shown in Section VIII. The well-known Poisson spot
effect, as well as the behavior near the axis, will also be studied. Finally, in
Section IX, expressions for the scattering amplitude in all directions will be
derived.

The main results and conclusions derived from the present treatment will
be summarized in Section X. Some of them are not new, but have been included
here for completeness. The basic mathematical tools employed will be presented
i Appendices A to I*.

II. WATSON’S TRANSFORMATION
A. Tue Torar Wave FuncrioN

Let the incident plane wave be given by
Yi(r, 0) = exp (itkr cos 8) = 2 (21 + 1)i'5,(kr)Py(cos ), (2.1)
=0
where j; is the spherical Bessel function of order [ and P;(cos 6) is the ith Legen-
dre polynomial.

The solution of our problem is given by the well-known partial-wave expan-
sion

0 0) = 5 3 U4 DI (o) + SUOM()IPieos 8),  (22)

where the S-function S;(8) is determined by the boundary condition ¢/(a, §) = 0:

Si(B) = —hiP(B)/RS"(B), (2.3)
and we have introduced the notations
p = kr, 8 = ka. (2.4)

It is well known that at high frequencies one can associate with the Ith par-
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tial wave an “impact parameter”
p=(1+18)/k (2.5)

and all partial waves with p; < a are strongly affected by the scatterer. Thus,

the number of terms one has to keep in the partial-wave expansion is of the

order of 3>> 1, so that (2.2) becomes useless at high frequencies.
Watson’s transformation is based upon the following formula:

- 1 1 exp (—1mwA) .
r(i+g) =5 Lo, @
where C is the contour shown in Fig. 1. This formula can easily be checked by
taking the residues of the integrand at the physical (half-integral) values of A.

Clearly, there is a large degree of arbitrariness in (2.6). For instance, the fac-
tor (cos 7A)”" might have been replaced by any analytic function having poles
with the same residues as this factor at the physical points. The only restrictions
to which the ““interpolating” function f(\) is subject are that it must reproduce
f(I + 14) at the physical points and that it must be regular in a neighborhood
of the real axis, so that the integral can be computed by residues in the indi-
cated manner. There is usually a wide class of functions satisfying these condi-
tions.

The choice of f(A) is dictated in practice by the requirement of appropriate
behavior at infinity in the A plane, since the next step in Watson’s transforma-
tion will consist in the deformation of contour ¢ away from the real axis, In
Field Theory, this leads to a unique continuation, with the help of Carlson’s
theorem (6).

This result does not apply in the present case. However, only two alternative
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Fig. 1. Paths of infegration in the X plane.
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choices of f(\) will be required. The first one leads to

#(r,8) = [ 50,8, ) Prosn(cos )2 2O (27)
where
. 1 Vi @ _H{Z)(ﬂ) o) ]
Jh, 8, ) -5(55) o [ ) LB i) .
_ 1/{=n 12 —ir/d g()\’ﬁy P) h
BEACZAR L
with
g\, B, p) = HS(B)H (p) — H (B)HS (o). (2.9)

In this expression, Py _y/2 1s Legendre’s function of the first kind and we have em-
ployed the relation h;(x) = (n/ 22) *H 410(z) between spherical and cylin-
drical functions.

The other choice is based on the relation

Pi(—cos 8) = (—1)'P(cos 8), (2.10)
which holds for integral I, and leads to

/2 A dA

2.
cos T\ (211)

91,0 = =i [ 70,8, p)Prcsa(—cos )¢

B. Poisson’s Sum Formura

We shall now consider an alternative transformation,! based on Poisson’s
sum formula (7), which, for our purposes, may be written as follows:

Zf(z + %) = mg_jw (—=1)" foa FOO ™™ dh, (2.12)

=0

Applying this to (2.2), we get

W0 =2 3 (=17 [ 10y 8, ) Prosa(eos 0

exp [iw)\ (2m + %)] M dA.

Substituting A by —X in the integrals for m =— 1 to — % and making use

(2.13)

! This transformation seems to have been first employed by Bremmer (2, p. 210). It was
subsequently adopted by several authors.
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of the properties
P\ _yp0(cos 8) = Py_yp2(cos 0), (2.14)
HS (z) = e™H(x), HR(x) = ¢ "H"(2), (2.15)

we find that (2.13) can be rewritten as

VoL = 30l ), (216)
where
dnlr,0) = 21" [ : FO B, ) Preya(cos 6) exp [imh (2m + 1)l A dh. (217)

This result is equivalent to (2.7). In fact, according to (2.14) and (2.15),
the integrand of (2.7) is an odd function of A, so that the lower half of contour ¢
may be replaced by its reflection about the origin, shown in broken line in Fig. 1.
Accordingly, contour € is equivalent to the straight line D located above the
real axis. On D, the following expansion is valid:

e—i)wr/Z

_ 261')\7/2 Z ( -1 )me2im7r)\. (218)
Ccos TA m=0

Substituting this result in (2.7), we are led to (2.16). It will be seen later that
(2.16) is a more convenient form for several purposes.

C. TuE INCIDENT WAVE

We shall now apply Watson’s transformation to the incident wave (2.1). The
resulting expressions will play an important role later on.
A derivation similar to that of (2.7) and (2.11) leads to the representations

g7 = (1) e f Ja(p)Gi(, 8) dh, (2.19)
2p c

. S\

et = (;)—> e‘"”f Ja(p)Ga(\, 8) dA, (2.20)
2p c

where
Gi(\, 8) = Ne MPy_12(cos 9)/cos T\, (2.21)
Gy(N, 6) = —ine™ " Py_y2(—cos 8)/cos wA. (2.22)

The next step is to deform contour € into a contour that is symmetrical about
the origin. For this purpose, we must find the asymptotic behavior of the inte-
grand at infinity in the A-plane.

The asymptotic behavior of the cylindrical and Legendre functions is discussed
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in Appendices A and C, respectively. According to (A.6),

1 1/2 ep A
no~(m) (&) - e
and, according to (C.8),

Gi(X, 8) &~ (2\/x sin 6)"* exp |:i)\ (g — 0> + zg-:l (JAN] = o inly),

~ (2N/7 sin exp| —tA| — — — 1 =
(20 /7 si 0>1/2 p[ (3)7r ) 7;] (2.24)

(IN} > ©inl-),

Gs(\, 8) & (2\/m sin )" exp [D\ (’_; + 0> — z’ﬂ ([N ] — o inTy),
; (2.25)

~ —(2\/x sin 6)* exp l:i)\ (7; - 0) + zg] (IN[— o inT-),
where I, and I_ denote the upper and the lower half of the A-plane, respectively.
It follows from these results that contour ¢ may be freely deformed in the
right half-plane, except possibly along directions approaching that of the imagi-
nary axis. To study the behavior along such directions, let us introduce the nota-

tions

<

o = 1exp (1) = exp I:’L <7~)r + e>:|, (2.26)

n=celn|2\/ep | (227)

and let us consider the behavior of the integrand when A — e and simul-
taneously ¢ — 0 in such a way that 5 approaches a constant value.

The curves N = o/ A|, 7 — —7/2 and X\ = —g| N |, 7 — 7/2 for large |\ |
are shown in broken lines in Fig. 2 and Fig. 3. According to Appendix A, the
function J(p) approaches zero to the right of these curves, and so do the inte-
grands of (2.19) and (2.20), so that it suffices to consider their behavior to the
left of the eurves. In this region, (2.23) to (2.25) imply

= (sin )" | n(p)Gi(A, 0) | & exp [| X [(n + 8)] for X — o o, (2.28)
~exp[— |AN| (n—0+7)][forN— —0o o,
and
ZZ—' (sin )" | Jn(p)Ge(N, 0)| =~ exp [| A [(n — )] for X — ¢ o,
(2.29)
~expl— [A|(n+ 86 —7x)]forA—> —0o o,



30 NUSSENZVEIG
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F1c. 2. The path of integration in (2.19) must begin and end at infinity to the right of
the shaded regions. A possible path that is symmetrical about the origin is shown (¢ < 7/2).
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Fic. 3. The path of integration in (2.20) must begin and end at infinity to the right of
the shaded regions. A possible path that is symmetrical about the origin is shown (6 > =/2).
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It follows from these results that the path of integration in (2.19) may be
deformed at will, provided that it stays asymptotically to the right of the shaded
regions in Fig. 2. A symmetric path of integration can be found, as shown in
Fig. 2, provided that the corresponding # satisfies

§—7 <9< —4, (2.30)

which is only possible for § < =/2.
Similarly, as shown in Fig. 3, a symmetric path of integration can be found in
(2.20), provided that the corresponding 5 satisfies

T—0< <8, (2.31)

which is only possible for § > #/2.

We shall therefore take (2.19) with the path of Fig. 2 for § < =/2, and (2.20)
with the path of Fig. 3 for 8 > »/2. Making the substitution X — —X in the
integrals from —o¢ % to 0 and employing (2.14) as well as the identities

Jalp) — €™ T (p) = —ie™ sin aNH{" (p), (2.32)
Ta(p) — ¢ ™ a(p) = ie ™ sin oA (p), (2.33)

we finally get the integral representations’

1/2 o . .
oot = —<£> e“’“fo H (p) Py—1/2(cos 8)e™" tan(aA)\ d\

2p
T
(e<3),

. 1/2 X oo .
et (1_) e_“'“fo H®(p) Pxyj2( —cos 8) ¢ ™% tan (AN d\

2p
T
(e>7),

the corresponding paths of integration being those shown in Fig. 2 and in Fig, 3,
respectively.

(2.34)

(235)

III. THE POLES OF THE S-FUNCTION

In order to deform the path of integration in (2.7) and (2.11) away from the
real axis, we need information about the singularities of the integrand in the
A-plane. The integrand is a meromorphic function of A, and its poles are the poles
of the S-function

S(x, B) = —H\'(B)/HY' (8), (3.1)

2 An integral representation related to (2.34), but involving trigonometric instead of
Legendre functions, was given by Franz and Galle (8).



32 NUSSENZVEIG

which are the roots A.(8) of the equation
H{ () = 0. (3.2)

They might be called the Regge poles for the hard sphere problem, although
they do not show the typical Regge behavior characteristic of Yukawa-type
potentials.

The roots of (3.2) have been discussed by several authors (2, 4, 9, 10).
We are only interested in their behavior for large values of 8.

It follows from (2.15) that the roots are symmetrically distributed with re-
spect to the origin, so that it suffices to consider them in the right half-plane.
In this region, there exists an infinite number of roots, all located in the first
quadrant, close to the curve h; defined by (cf. Appendix A):

Re [\ — )" — Acosh™ (A/8)] = 0. (3.3)

This curve is shown in broken line in Fig. 4. It cuts the real A axis at N\ = 8, at
an angle of 7/3, and tends to become parallel to the imaginary axis as [N | — =.
All the roots are simple (9).

The roots of greatest physical importance are those closest to the real axis,
which are located in the neighborhood of A = . In this region, we can use the
expansion (A.17):

H"IA — 2e™(0\/2)"°] = 26777 (2/M)PAi(—2) + OV, (34)

Since the zeros of the Airy function are all located on the negative real axis,
we get (4)

M(B) = B+ (8/2) 2™ + 087, (3.5)
ImA
1
Cn 1
!
'
X

= Rn o 8 Rn

Fia. 4. X X X—Poles of the S-funetion, located on curve h; . The contour C, passes
half-way between consecutive poles.
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where —uz, is the nth zero of the Alry function. A table of the first five zeros is
given in Appendix D. According to (D.7), we have, for large n,

M(B) x> B4+ LBBr(n — L)%™ (v > 1). (3.6)

Let us finally consider the asymptotic behavior of the roots for [A | — <.
In this region, the behavior of H{" in the neighborhood of ky is given by (A.7):
H)(\l)(ﬁ) ~ 2(2/7‘_)1/2()\2 _ BZ)—I,’4ei1r,’4 Sillh l:()\z _ 52)1/2

—xIn ATV —8) (N = 62)1/2> - 7}7—r]
B 17
so that the roots are given by

2 241/2
X, In [’LifL;‘i)_] — O — O = z'(n _ 1) r (38)

(3.7)

8 4
Let
A\ = pn €Xp [% (g - €n>:| , pn > B (3.9)
Then, (3.8) gives
e In (2p./e8) x~ w/2, (3.10)
where
o.1n (2p,/e8) X (n — Lq)w. (3.11)

This equation may be solved by iteration. We find

B 1 r(n — )N Inlnn
pn = <n 1)#{111 [———eﬁ——:l} l:l + 0 ( i ):', (3.12)

so that (10)

ME) = ir{n — 14) i

In [2a(n — 14)/e8) P {2 In [2n(n — 24)/eBl]
.[1 10 (111 In n)] (I h \ > Bg).
Inn

Thus, both Re A, and Im A, approach infinity with n, but Re X\, does so more
slowly by an inverse logarithmic factor. Note also that X, — N,y = O[(Inn)7],
so that the roots cluster closer together as n — =.

The residues of the S-function at its poles will also be required. According to

(3.13)
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(3.1),
!
ra(8) = residue S(\, 8)[x=, = —HA\, (8) /’—%Hi”(ﬁ) (3.14)
A=Ay, -
In the neighborhood of A = B8 we have, by (A.17),
HYIN — ze™(0/2)7] = 26™2(2/0) P Ai(—2e’™) + O(N7). (3.15)
It follows from (3.14), (3.15), (3.4), and (D.2) that
et 5)”3 1
ra(8) & —— (—2— T —aTF (3.16)

at the poles (3.5). Asymptotically, for n > 1, we may employ (D.8), which
leads to
e X Y6 B B (n — 1) (n>>1). (3.17)
Finally, let us consider the residues at the poles (3.13). In this region, Hy”
is given by (cf. Appendix A)

<

) 1/2 &
HP(B8) x4 <:7> (- gHH

2 a1
. exp{— (N = 8)" 4+ Aln [ﬁ%—&]}

(3.18)

so that, according to (3.8),
HP(8) & (=1)"e™2/m) ! = )7 (3.19)
Similarly, according to (3.7) and (3.8),

] 2 _ 211/2
OHSY (8) /N rar, = (—1)"126™/(2/m) 2 (N — 32)—1/4IH[M%——E)—:|- (3.20)

It follows from these results that

i 1 2r(n — L) N7
o ~§{1n [TJ} (3.21)

i \
. exp{‘ 21n 27(n — 1/4)/63]} (| M ] >89,

so that r, — 0 like (In #) ™ for n — .
IV. THE RESIDUE SERIES

Let us consider the integral that appears in (2.17). We already know that the
integrand has an infinite number of simple poles in the upper half-plane. Let
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us now inquire under what conditions the integral is reducible to a series of resi-
dues taken at these poles. For this purpose, we must find a sequence of paths
(. passing hetween the poles and such that

lim f TN By p) Pa—yj2(cos 8) exp [end(2m + 15)] A dh = 0. (4.1)

n->%

Let us consider the behavior of the integrand as | A | — » in I, . It is shown

in Appendix B that
%4 p A
snsn <2 = () Jani— =, (42)
A v a

where ¢ 1s given by (2.9).

According to Appendix A, the behavior of Hy" (8) differs on the right and left
of the curve Ay (cf. (3.3)) where the poles are located. In regions 2 and 3 of
T'ig. 4, we have

1/2 A
)] ~f(2Y ﬁ )
7' (8) ~ <ﬂ> (2x> ; (4.3)
whereas, in region 1,
1/2 A
Wiy~ o 2 ?'_X) 1.
H7(8) ~ —i (m) (eﬂ . (4.4)
In the neighborhood of &, , according to (A.7), we must take the sum of hoth
estimates:
8 2\ eB T
1 ~ 2 el irid _: Yy o =
Hy’(B) <7.—)\> ¢ sinh [)\ In (2)\) 7 4] . (4.5)

Let us exclude, for the moment, the directions # = 0 and 6 = =. Then,
according to (C.8),

Prap(cos ) & (2rh sin 0) 7 exp (—iN0 4 in/4) (N ]| > = in [,). (4.6)

It follows from these results that, for | X | — =, the integrand of (4.1) be-
haves like

exp{ Aln <?\> + 2A (g — 0> + Zimw)\] in region 3, (4.7)
L o 2
B 2\r LT . . .

- JR— 2 a 2

exp _>\ In (elcaz) + A <2 6 ) + 20mzA |in region 2, (4.8)
i 2\ L . . .

exp| —Aln ” + iA| 5 — @) 4 2imr) | in region I, (4.9)
| o 2
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except in the neighborhood of curve h; , where it behaves like

K\ = &P (r/a) + i {(x/2) — 61 + Zimr)]
' sinh [A In(2N/eB) + ¢ /4] :

It is readily seen that (4.7) approaches zero at least exponentially for all 6,
0 < 6 < 7, the same is true for (4.8) and (4.9) if m = 1. However, for m = 0,
(4.8) and (4.9) go to zero everywhere if and only if 6 < =/2.

Finally, near h; , we have to avoid the poles, which are the zeros of the de-
nominator of (4.10) (cf. (3.8)). For this purpose, we shall choose C, as a half-
circle of radius R, passing half-way between consecutive poles, so that, for large
n, we have, according to (3.11),

(1.10)

R.In (ﬁ) + T =t (4.11)

€l

Then, in the neighborhood of A, ,

A = R, exp [i G - e)] (4.12)

cosh alsinb |, (4.13)

and, since

| sinh (@ + @b) | = (sinh’a cos’ + cosh’a sin’p)"*

%

it follows from (4.10) that

exp [—R.[2mr + (7/2) — 8 — ¢ln (r/a)]]
cosh{R,[e In(2R,/e8) — (x/2)]} (4.14)

< exp [—R.2mr + (7/2) — 8 — e¢In (+/a)]].

| KOV

1A

Since ¢ — 0 along hy and its neighborhood,” we see that K(\) approaches zero
exponentially for 0 < 8 < =, m = land for0 < § < =/2if m = 0.

Since Py_y2(1) = 1, it is readily verified that all the above results remain
true if 8 = 0. However, near § = v, we can no longer employ (2.17), since
Py_15(cos 8) has a logarithmic singularity at this point.

In conclusion, we see that (4.1) is valid for all m = 1,0 £ 6 < =, but it is
only valid for 0 £ 6 < 7/2if m = 0. It then follows from (2.17) that

1/2
Unlr, ) = (=1)" 2me’™"* (2%)
(4.15)

20 A 7 exp [imh (2m + 18)] Hy, (p) Pr,—12(cos 6)

n=1

3 For a diseussion of the width of this neighborhood, see Appendix A.
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provided that

m = 0, 0=0< or m

I

1, 0=<6<m, (4.16)

o]y

where \,(8) are the poles of S(X, 8) and r,(8) is defined by (3.14).
One can verify directly, with the help of (3.13) and {3.21), that, for n — o,
the nth-order term of (4.15) behaves, in absolute value, like

N R,
exp{ 2 In(2nw/eB) l:.‘"”r + 2 6 2 In(2nw/eg) ) ’

so that the conditions for the convergence of the residue series are exactly those
stated in (4.16).

A rigorous discussion of Watson’s transformation and the convergence of
the residue series in the shadow region was apparently first given by Pflumm

(11).
V. THE SHADOW REGION

We shall begin the discussion of the solution with the simplest case, namely,
the behavior in the shadow region.
According to geometrical optics, the shadow region is the whole cylinder

0Z0<6 £7/2, (5.1)
where
g, = sin*(a/r) (5.2)
is the shadow boundary angle. Actually, as will be seen later, the shadow of the
spherc does not extend beyond distances ~ga, and the transition to the illumi-
nated region already starts at much smaller distances, of the order of §'a.

Since 8 < 7/2 in the shadow region, (4.15) is valid for all m = 0, so that
(2.16) becomes

1/2 ®
Y(r, 8) = 2me™" <1> (=1

2P m=0

© D Na T €XD [iw)\n (Qm + %):, H{i)('p)P)n_l/g(cos ) (5.3)

. 1/2 = e
_ (1) 3 SR CIN2) par g o)

n=1 CoS A,

where we have employed (2.18). The last form of this result could also have
been obtained directly from (2.7).
Fquation (5.3) is formally similar to an “eigenfunction” expansion in terms
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of the functions Hj (p), which satisfy the boundary condition on the surface
of the sphere (ef. (3.2)) and the radiation condition at infinity. The latter
1mplies a nonself-adjoint problem, explaining why the *“‘eigenvalues’ are complex,
It was remarked by Sommerfeld (72) that the “eigenfunctions” are even orthog-
onal in a certain sense, and he proposed to derive (5.3) on this basis. However,
as was shown by Pflumm (77), the set of “eigenfunctions” is by no means com-
plete, and no general characterization of the class of functions for which the
expansion is applicable has so far been given.

In practice, even though (5.3) converges for all § < #/2, its usefulness is
restricted to the domain where its terms are rapidly decreasing from the begin-
ning, so that only the first few terms have 1o be considered. This happens only
within the shadow region, as will now be seen.

Let us consider the first few terms of (5.3), corresponding to poles of the type
(3.5), located near A = 8. We shall restrict ourselves to points within the
shadow region, not too close to the surface of the sphere, so that

r—a>» g8 " (5.4)
Under these conditions, we have kr — |\, | 3> | A, "%, so that we may employ
the expansion (A.16) for Hi,ll) (p). Furthermore, assuming that

6> 87, (5.5)

we have |\, [§ >> 1, so that we may employ expansion (C.8) for P, _i»(cos ).
Substituting these expansions in (5.3), and taking into account (3.5) and
(3.16), we get

—in/6 1/3 2 VA a2 o 2\1/2] ®
‘p("a 0) ~ éﬂ.)]/z <§> <,.2 ¢ afe) =P [1k(7 ‘ ) ] Z (“1>m

2 — (kr sin §)12 =0 3
. (7.6)
. . T . . T
T e o (o +15) + o (s - 1) |
where
Ym = 0 — 8 + 2mr, (5.7)
8, = G - 0 4+ 2mm, (5.8)

and 6 is given by (5.2).

In writing (5.6), we have already assumed that only the first few terms of the
series give a significant contribution, since the approximations employed cor-
respond to the poles (3.5). Thus,

| exp (1N, vo) | = exp [*%ﬁ Tn (g)w (80 — 0)] (5.9)
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must be a rapidly decreasing function of n. This will be true provided that
Yo =8 — 8> ", (5.10)

s0 that (5.6) is valid in this region.

The physical interpretation of (5.6) is well known (13). At short wavelengths,
one may employ the concept of propagation along rays. The incident rays that
are tangent to the sphere at T, and T (Fig. 5) excite a series of surface waves
emanating from these points. These waves travel along the surface with phase
velocity slightly smaller than that in free space, due to the delay in overcoming
the curvature of the sphere. As they travel along the surface, they shed radiation
along tangential directions, leading to the angular damping factor (5.9).

A point P within the geometrical shadow is reached by two rays emanating
from the points Ty and 7T, where the tangents to the sphere from P meet the
surface (Fig. 5). The corresponding angles travelled along the surface are,
according 1o Iig. 5,

vo = (7/2) — cos '(a/r) — 6 = 6, — 6,
8 = (m/2) — cos ‘(a/r) + 0 = 6, + 6,

in agreement with (5.7) and (5.8) for m = 0. The paths TP and T,T, P
are called “‘diffracted rays” in Keller’s geometrical theory of diffraction (18).

The terms with m = 1 in (5.6) correspond to rays which have encircled the
sphere m times before leaving the surface, so that the corresponding angular
paths are increased by 2ma. This interpretation is corroborated by the solution
to the problem of diffraction of a pulse (1.4), where one can follow the diffracted
wave front around the sphere. In each encirclement, the rays go through the

- U
(rz—ag)llz
pA
S P(r,8)
cos'e T
G [ 2
01 “{cos-'a
(r2_02)|/2
o
T
Te

Fic. 5. Diffracted rays T, T,'P and T,T,’P reaching a point P in the geometrical shadow
region.
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points Ty and T, where all diffracted rays meet. As is well known, passage
through a focal point leads to a phase decrease by =/2. This explains the factor
lexp (—ir/D)f™ = (=1)"in (5.6).
The phase factor
exp 1ik(¥ — @) + k[l + 2.(48) " aym}

also corresponds to the described optical path (and similarly for the term in
8= ). Note the decrease of the phase velocity along the surface.

The denominator (+* — a*)""*(» sin 6)""* can also be obtained from the law of
conservation of the intensity along a pencil of rays (13). This denominator would
vanish at » = a, which is a caustic of diffracted rays, but, according to (5.4),
(5.6) is not valid there (the actual value, of course, is ¥(a, §) = 0). It would
also vanish at @ = 0, but this is excluded by (3.5).

The direction 8 = 0 is a focal line of diffracted rays. In fact, an observation
point P on the axis is reached by a whole cone of diffracted rays tangent to the
sphere, instead of by two rays only. This focusing effect, which is responsible
for the well-known Poisson spot (cf. Section VIII), leads to an enhancement of
intensity near the axis.

In fact, for 0 < 87, we must employ (C.9) instead of (C.8), so that (5.6)
is replaced by

13 1/2 2 1/4
v~ e (§)(6) (7)) ew ot - o

0

' m exp [tA.(2mm + 6)]
2 (-1 X T e R

(5.11)

m=0

The surface waves associated with the poles N, are also known as “creeping
modes”’ (5). It should be emphasized, however, that the above physical inter-
pretation applies only to the lowest-order inodes. As soon as the damping within a
single wavelength becomes appreciable, the above concepts lose their validity.
In practice, of course, only the lowest-order modes give a significant contribution.

VI. THE NEARBY LIT REGION AND THE WKB APPROXIMATION

We shall now consider the behavior of the solution in the lit region, not too
close to the surface, so that (5.4) is assumed valid, but still not in the far field
region, which will be treated in Section IX. We shall also stay away from the
neighborhood of the shadow boundary, which will be discussed in Sections VII
and VIII.

A. Tag Forward HALF-SPACE

For 8 > 6,, we have v < 0 in (5.6). According to (5.9), this implies that
the residue series containing v, starts out with exponentially increasing terms.
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It does not follow that the residue series representation becomes incorrect, for,
as we have seen in Section IV, it still converges for 8 < #/2. What happens,
however, is that it becomes useless for all practical purposes. The physical
reason for this behavior is that the wave function is no longer exponentially
damped, but contains additional contributions corresponding to the incident
and reflected waves in geometrical optics.

A modification of Watson’s transformation to take into account these con-
tributions in the lit region was first proposed by Fock (3). As reformulated by
I'ranz (4, 5), the basic idea is to substitute in (2.7), taken over the alternative
contour D in Fig. 1, the identity (C.5)

Py_ys(cos 6) = —1’ei”)‘[P>\‘1/g( —cos 8) + 27 cos W)\Q)(\}-)l/z(COS 8)]. (6.1)

The integral of the first term on the right-hand side of this expression is then
reduced to a residue series, which gives, as we shall see later, the continuation
of (5.3) into the lit region. The second term cancels the denominator cos wA
in (2.7), so that the integrand no longer has poles at the positive hali-integers,
and the integral can be evaluated by the saddle-point method, yielding the con-
tributions from the incident and reflected waves. We shall see, however, that
the proposed contour of integration can only be employed in the forward half-
space (8 < w/2). In this region, we shall derive essentially the same results by a
different method, which has the advantage of greater simplicity, as well as of
showing more clearly the connection between the lit and shadow regions. This
method does not require the re-evaluation of the whole residue series, but only
of that part of the term m = @ in (5.6) that “goes wrong” for 6 > 6, .

In fact, for m = 1, not only is the transformation that led to the residue series
allowed for 0 £ 6 < 7 (cf. (4.16)), but also the corresponding residue series
in (5.6) are all rapidly convergent, so that we need only be concerned with the
term m = 0. The corresponding term in (2.17) is

¢ane)=:z/ F(N, 8, p) Proyje(cos 8)e™ >\ d. (6.2)

Lei: us make the splitting (ef. (C.2))
Pr_ip(cos 8) = Q3 a(cos 8) 4+ Qi j2(cos 6). (6.3)

Then, aceording to (C.7), the term in v, in (5.6) arises from Q\2;2, while that
in 8, arises from Q%1 .

The residue series containing & remains rapidly convergent in the lit region,
provided that (cf. (5.8))

86, + 6) > 1, (6.4)

which will be assumed throughout this section. The vicinity of the forward direc-
tion, where this assumption is not fulfilled, will be considered in Section VIII.
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Thus, we finally have to consider only the expression
0+1¢
v 0) =2 f TN, B, p) Q12 cos 8)e™ ™2\ dn, (6.5)
007 ¢

where the path of integration has to be taken slightly above the real axis in order
to avoid the poles of Q{1 at the negative half-integers. This is done before the
splitting (6.3). We shall see that the geometrical-optics approximation to the
solution 1s entirely contained in this integral.

The behavior of the integrand of (6.5) as [N | — = in [, is similar to that
of {4.1) with m = 0. In fact, according to (4.6) and (C.7), the behavior of
Py_12(cos 8) in I, is the same as that of Q{Y2(cos 8). The discussion given
in Section IV implies that the path of integration in (6.5) may be deformed
at will in I, for 8 < =/2.

Following Franz’s method (5), we shall deform it into the path T shown in
Fig. 6, going around the poles of S(), 8), and beginning and ending at infinity
in the region between the curves n — 37/2 and 4 — —=x/2, where 7 is defined
by (2.27). According to Appendix A, Hy”(p) — 0 as |\ | — o in this region.
It follows that we may split (6.5) into two integrals, corresponding to the two
terms in the second member of (2.8), since each of the integrands will sepa-
rately go to zero as |\ | — o in this region. The integral containing Hy" (p)

ImA

3w
Uinare 4

F16.6. X X X—Poles of the S-function; O O O—zeros of the S-function; ® ® @—poles
of Q{}),2(cos 6). The path of integration I' goes through the saddle points A = kp and A =
psin 0(6 < =/2).
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identically vanishes, since the contour may be closed at infinity and the inte-
grand has no singularities within it. Finally, we get

172 (2) R
—ir H(B) o0, A \ inel2
WO (r,8) = —(ﬁ) o HP (0)Q0 0 cos 8)e™ X dN
2p r H"(8) (6.6)

(6 < 7/2).

The path T crosses the real axis twice: first between 0 and 8 and then between
8 and p. We shall see that there is one saddle point of the integrand in each of
these intervals, and T will be taken through both saddle points. In the lower
half-plane, to the left of the curve » — = (Fig. 6), the integrand increases ex-
ponentially for | A | — =. However, the steepest descent paths corresponding to
the two saddle points can be joined by an are going through the neighborhood of
the first zero of Hy”(B), where the integrand is small (5).

To the right of the curves by and hs in Fig. 6, we have, according to Appendix A,

HY(8)/H\"(8) ~ —1. (6.7)

L
by

I'urthermore, we can employ the expansion (A.16) for H) '(p) and the expan-

sion (C.7) for Qi »(cos 8). Making the change of variable
A = psin w, (6.8)

we find that the portion of the contour I' to the right of A and ks contributes

27 sin @

1/2
%=< p) e [ 4w, 0,0) exp lipalw, ) dv,  (69)

where the path of integration crosses the real w axis between w = 0 and w =
7/2, and

a(w, 0) = cos w + (w — ) sin w, (6.10)
A(w, p,8) = (sin w cos w)1’2{1 + i( cot 6 3+ 2sin’ w>
4p \2 sin w 6 cos® w
\ (6.11)
+ O(P;Q)f .

In this approximation, (6.9) is independent of the radius of the sphere, so that
Y1 should correspond to the incident wave. This is indeed so, as will now be seen.
The exponent (6.10) gives rise to a saddle point at
w =0

corresponding to X = p sin 6§, as shown in Fig. 6. The corresponding steepest
descent path crosses the real axis at an angle of »/4.
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Taking into account not only the main term, but also the first correction term
in the saddle-point method, the behavior of (6.9) for large values of p is found
1o be given by

‘I/ B Aeipa {1 + ’L I:A// ;1I aw
1 = 75— =51 —(— —

(a” sin 6)12 2a¢"p | A4 4
" 1
()2
a 1«

where A, o and all their derivatives (denoted by 4', &”, ---) are to be taken at

the saddle point.
Substituting 4 and « by (6.10) and (6.11), it is found that the expression
within square brackets identically vanishes, so that

Y= " L 0 (p>1). (6.13)

Q

(6.12)

E

+ 1

(&)

Thus, the contribution from the right-hand saddle point is essentially identical
to the incident wave.
To the left of the curves h; and hy (Fig. 6) we have, according to (A.16),

HP(8)/H" () = exp{—J[(ﬁ2 — )Y — X cos! (%) - ﬂ}

i 5 A
'[1 T >\2)1“<1+§62—>\2>+ ]

and, again making the change of variable (6.8), we find that the contribution
from the portion of the contour T to the left of h; and h, is

(6.14)

1/2 . )
yo— —(_* e”“fB(w, p, 6, %) exp lips(w, 8, 7)] dw, (6.15)
27 sln 0

where
vy = a/r, (6.16)

1/2

8(w, 8,v) = cos w — 2(4° — sin” w)

+ sin w |:w — 04+ 2cos" (%EJ)] , (6.17)

, té
B(w, p,8,v) = (sin w cos w)”z{ +ﬁ[,ﬂ__

2 sin w
(6.18)

(2sin" w4 3y") (34 2sin” w):] Y _2)}

3(y* — sin? w)32 6 cos® w

+
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The saddle point is determined by the condition

. 60— w
sinw = vy cos | —;

p = rsinw = a cos <9_;_w> . (6.19)

or

The corresponding value of X\ is X = p sin @ = kp (cf. Fig. 6). The steepest
descent path crosses the real axis at an angle of —= /.
The physical interpretation of (6.19) is shown in I'ig. 7. According to (2.5),
p = Mk may be interpreted as the impact parameter assouated with an incident
ray. As shown in Fig. 7, this is precisely the incident ray AB that reaches the
observation point P after being reflected at the surface according to the laws of
geometrical optics. The angle
¢ = 15(0 —w) (6.20)

is the complement of the angle of incidence.
A saddle-point evaluation of (6.15), including the first correction term, yields,
similarly to (6.12),

Beipg : B/I B/ "
r = v 1 iy
Y= T s ewZ{ 16”1[ TRV

5 (8"\ 1 5”’} s
—\ o - 0
+m@>+ﬂv|+<p)’
where B, 6, and their derivatives are to be evaluated at the saddle point.
It is convenient to express the result in terms of the parameters ¢ and

(6.21)

s =rcos — =sin ¢, (6.22)

[T

which measures the distance (taken along the ray) from the observation point
to the caustic of the reflected rays. Substituting (6.17), (6.18), and (6.19) in
(6.21), it is found that

a sin §>:|

= - a sin 2¢ }1/2 |: (
Y= _[48(8 sn2t Facos )| P ik (s
1 1 a 3 9 . o\ |

<1 % [Sin3 t Tt et s oy <sin ¢ T osin §><§) (6.23)

1~ a 8 . 1 . a 2
T o9 cos’ ¢ ( > 2 sin feos ¢ (ssin 2f + a cos® {):‘ + 00 )} ’

This asymptotic expansion in inverse powers of k corresponds to the well-

l\JIuO




46 NUSSENZVEILG

P(r,8)
w/=8-2{
It
-t r
A 5 D
AN
N4 9
£,/ N\et
o 2

F1g. 7. Physical interpretation of the left saddle point: p is the impact parameter of
the incident ray A B which reaches point P after geometrical reflection at the surface.

known WKB approximation, which has been investigated by Luneburg (15)
and Kline (16) in connection with Maxwell’s equations.

The first term of (6.23) represents the reflected wave according to geometrical
optics (first-order WKB approximation). The amplitude of this ferm takes
into account the divergence of the rays after reflection at the surface.

The remainder of (6.23) represents the correction to geometrical optics.
It contains the main correction term, which is proportional to k', corresponding
to the second-order WK B approximation. This term has also been computed by
Keller, Lewis, and Seckler (17), directly by the WIKXB method. Equation (6.23)
agrees with their result.*

The complete expression for the wave function in this region, according to
the above results, is

_ e’*ir/ﬁ ﬁ 1/3 a2 1/4 exp ['ik(r2 . a2)1/2]
Vo=t et (2m)ir (§> (r2 — a2) (fr sin 9)!72

{ —in/4 Z eXp (z)\ 60 )4 21 (—1)" ; m (6.24)

X l:exp (i)\n Ym + 1 z_r) -+ exp (i)\,, Om — 1 Z):I} ,

4 Actually, the expression within square brackets in the second term of (6.23) differs
from Keller, Lewis, and Seckler’s by the powers of 2 in the denominators, which are all
less by one unit. However, it can be verified that this is due to a misprint in their paper.




HIGH-FREQUENCY SCATTERING 47

where ¥, and ¢, are given by (6.13) and (6.23), respectively. I'rom the point of
view of a strict asymptotic expansion, the residue series should not appear in
this expression, since it is exponentially small as compared with the other two
terms, and even with respect to higher-order correction terms not taken into
account in (6.23). However, from a physical point of view, this term is meaning-
ful, since it represents the continuation of the surface waves (5.6) that were
found in the shadow region. Note also that the residue series in & becomes sig-
nificant near the shadow boundary, when condition (6.4) is no longer satisfied.

B. Tue Backwarp HaLr-SpacE

The ahove treatment is no longer valid for # > /2. According to (1.8) and
(4.9), the integrand of (6.5) blows up exponentially for | A | — o« in the region
between the imaginary axis and the curve » — —/2 in Fig. 6. Thus, the trans-
formation that led to (6.6) can no longer be performed. Furthermore, the in-
tegrand of (6.6) no longer has a saddle point on the real axis hetween 8 and p;
rather, it is the other term in (6.5), containing H{”(p), that has such a saddle
point.

It is therefore necessary to modify the above procedure in the whole backward
half-space. For this purpose, we shall again start from (6.5), but now taking
the path of integration symmetrically about the origin, from — < <+ ie to
+ = — fe (note that there are no poles on the positive real axis), and we make
the substitution A — —X\ in the integral from 0 to + % — ¢e. Taking into ac-
count (2.15) and the relation

O\ (cos 8) — e QU1 0(cos 0) = — ¢ an aAPy_ya( —cos ), (6.25)

which follows from (2.14) and (C.5), we find
—otie N
vl (r,0) = 2 / SN, B, p) Pr—1/2{ —cos 0)e ™\ tan 7r d\.  (6.26)
0

The behavior of the integrand in region 3 of Fig. 4 differs from (4.7) (with
m = 0) only by the replacement,

ooy~ ool (5 )

so that, for A — o (cf. (2.26)), it behaves like

exp [— [X|(n + 6 — m)],

where 7 is given by (2.27). It follows that the path of integration in (6.26) may
be deformed into the path from 0 to ¢ shown in Fig. 3, with

7> 7 — 6. (6.27)
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Thus,

1/2 . g (2)
Wino = (£) o [T - B g |

X Py_1s(—cos 8)e ™™ tan (AN dA.

(6.28)

In particular, for § > =/2, we may subject n to the additional restriction
(2.31). Under these conditions, (2.35) applies and (6.28) becomes

(()1)(1’, 0) — eipcosﬂ + ll/r, (629)
where
1/2 o yr(2)
T —in/4 H\"(8)
, = —|— ——— H Py—1/0( — 0
12 (2p> ¢ o H"(8) r (p)Pr—1/2( —cos 8) (6.30)

X ¢ tan (eA)N dA.

We may now apply again (6.25) and the converse of the transformation that
led from (6.5) to (6.26). The result is

¥r = _<1>”2 e H(6) HP () QL5 cos 8)e™ ™\ dr
2p oo HYV(B) (6.31)

(8 > =/2),

where the path of integration is that of Fig. 3 taken in the opposite sense.

This integral may be evaluated by the saddle-point method. There is now a
single saddle point on the real axis, at X = kp, where p is again given by (6.19).
In fact, the integrand is identical to that of (6.6), the only difference being that
the path of integration now goes over only one saddle point. Thus, the result of
the saddle-point calculation is identical to (6.23).

In spite of the fact that the solution in the backward half-space is just the
continuation of the solution in the forward half-space, it does not seem possible
to extend the representation (6.6) to 6 > /2, or to extend (6.31) to 6 < =/2.
The reason for this is that Px_j»(x) becomes singular at x = —1, so that one
cannot find a single representation that remains valid both for § = 0 and for
6 = m. One needs a representation in terms of Py_ja(cos 8)(cf. (6.2)) near
8 = 0, and one in terms of Py_y2( —cos 8) (ef. (6.28)) near § = =. The appearance
of two saddle points in the forward half-space is also related to the diffraction
effects that arise, as will be seen in Section VII, when these points approach
each other.

We must still see what happens to the residue series near § = w, because
both the term ¢§’ containing Q\*1,s(cos 8) in (6.2) and the terms ¢, with
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m 2 11in (2.17) become singular at this point. However, we can write

w0 e
e+ 2 Y =2 f JON B, 0)@Z1s(cos 8)e™ N dN

m=1 —oc+ie

© 1
+2 3 (0" [ 008, 2@ c0s ) + QZicos 0)

m=1

. o (6.32)
X exp l:ivr)\ <2m + %):' N\ =22, (—l)mf (N B, 0)
= m=0 —c0tie
X [P a(cos 8) — QL) o cos 6)] exp l:z'w)\ (2m + %)j] A dX,
and employ the identity (cf. (C.5) and (C.6))
QP (cos 8) — QM p(cos 0) = —ie™ Pr_yja( —cos §) (6.33)
1o get
W+ Ldm = 202 (0" [ 10,8, p)Pra( =005 0)
" (6.34)

-exXp [z'vrk (2m — %)] AdA.

The contour of integration may be closed in the upper half-plane, leading to
the residue series

) 1/2 0
Yres(r, 0) = 2me "™ <§> > (=)™ D Aata exp |:i7r)\,, <2m + §>:|
m=0 “~

p =1
X H\Y(p) Pr,<112( —cos 6) (6.35)
= e " (%)1/2 ni; An Tn ﬁ%g(:l;\#” H{Y (p) Py,-12( —cos 8),
which differs from (5.3) only by the substitution
Py, 12(cos §) — —7iexp (imh,) Py, _12(—cos 8). (6.36)
If
T — 0> 87, (6.37)

we may employ the expansion (C.8) for Py, 42 ( —cos 8) and we find that (6.35)
is equivalent to the residue series appearing in (6.24), so that (6.24) may be
continued to 8 > x/2.
Note that
v = 2% + (w/2) — cos ‘(a/r) — 6
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1o longer corresponds to one complete encirclement of the sphere, but rather
to the smallest angle deseribed by a surface wave excited at T, before leaving
the surface (Fig. 8).

If, instead of (6.37), we have = — 6 < ', we must employ (C.9), which
leads to

—2iz3 [ B H a . a2 e ;2 2.,1/2
Vres (7, 8) €7 5 () ( r o) P [ik(® — a®)'™
2 r Pt —

£

X Z_}O (=" Z [TTI—W exp {ih[2m + D + o)} Jolhu(r — ).

This expression should be compared with (5.11). The same focusing effect
already discussed there leads to an enhancement of the radiation from the surface
waves in the backward direction.

The approximations employed in the present section fail when the correction
terms appearing in (6.23) become large. This happens near the forward and
the backward directions. The behavior near the backward direction will be
discussed in Section IX, in connection with the scattering amplitude. The be-
havior near the forward direction and the corresponding diffraction effects will
be investigated in the next two sections.

(6.38)

VII. DIFFRACTION EFFECTS IN THE NEAR REGION
A. Tue NoORMAL DERIVATIVE ON THE SURFACE

According to Huygens’ Principle, the wave function at any point in space can
be expressed in terms of its normal derivative on the surface of the sphere
{where the wave function vanishes).

. T,
¢
P(r,8) r o codte \
17
0 > .
cos' ¥ 4
a %o
-'-ll
Te

Fi1g. 8. Diffracted rays 7,T,'P and T.7T,'P reaching a point P in the lit region.
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The analogue of Kirchhoff’s approximation in classical diffraction theory
would be to replace the exact values of the normal derivative by the geometrical
opties approximation:

x =0 (0 < 7/2), (7.1)
2 tkr cos . B cos d
x = E[%(ek 6):|r:a = 27 cos fe* 0<0> §>’ (7.2)
where we have introduced the notation
1 /oy
0 = - — . o,
x(8B, ) k<6r>r=a (7.3)

The expression (7.1) corresponds to the geometrical shadow region and (7.2)
to the geometrically lit region on the surface. The factor 2 in (7.2) arises from
joining the contributions of the incident and geometrically reflected waves.

Substituting (7.1) and (7.2) in the Huygens-Kirchhoff integral, one can
easily derive the corresponding approximation for the scattering amplitude
(18). 1t is found to be the sum of two terms, one of which corresponds to the
geometrically reflected wave, while the other one corresponds to the diffracted
wave in the classical theory of diffraction by a cireular dise of radius a. The latter
term, which s also known as the “‘shadow-forming wave,” depends only on the
shadow contour of the obstacle, so that it is the same for a sphere or for a dise.

Since we are later going to compare our results with classical diffraction
theory, it is of interest to discuss the accuracy of Kirchhoff’s approximation
by evaluating x. The only significant contribution arises from (6.5):

9 2 0+1e (i) R e i ;
X(()l) . _= < 2) Pl f M PRALD dA, (74)

B \r8 wtic  H"()
where we have employed (2.8) and the Wronskian relation
WIHY'(8), H\(8)] = — (4i/7B). (7.5)

For 6 > /2, the main contribution to (7.4) arises from a saddle point on the
real axis, to the left of A = 8, where, according to (A.16) and (C.7),
)

' (N/sin )'*(g — )"

AP 0 (cos 8) /HAY (8) & 5

(7.6)
X exp [-i(62 — A 40 (g — 0+ cos_l(k/ﬂ)>:|,
so that the saddle-point is at

cos " (X/B) = 6 — (x/2) — X = Bsin 6. (7.7)
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The saddle-point evaluation gives
xo! X 2icos e F% (0 — w/2> 87, (7.8)
in agreement with the geometrical optics approximation (7.2).

The condition in parentheses arises from the fact that (A.16) is valid only
for 8 — X > 8"*. As ¢ approaches =/2, the saddle point (7.7) moves towards
A= Band, if |§ — (x/2)] < B8, we have to employ the approximation
(A17):

H"(B) ~ 2(2/8)" e ™ Ai(2e"™") (Ix=8l 8%, (19

where

z = (2/8)"(x — B). (7.10)

Since the main contribution to the integral in this case arises from |z | < 1, we
may extend the range of integration where (7.9) is employed to infinity, with
the following result:

w e exp {(iBl(x/2) — )]}

~

F(r) (|6 — (x/2)| S8, (711)

X0 ™ Hsin 9)7 (48)13
where

r = (8/2)"(x/2) — 4] (7.12)
and

® o™ @ e_im
5(0) = || gy @ + | Aiwe )

®exp (—in/3) Ad(w)

(7.13)
dw.

Finally, if (x/2) — 6> 87, we may evaluate (7.4) by closing the path of
integration in the upper half-plane, where the integrand is exponentially de-
creasing at infinity. This leads to a residue series at the poles of [Hy" (8)]™". The
terms in the series are then rapidly decreasing and the main contribution arises
from the poles (3.5):

D 2 e 6_”/3 exp {i)\n[<7l'/2) - 9]} <1l' _ 71/3)
XN (E) GROR L AT g P ET) ()

This corresponds to the surface waves associated with v, in (5.6). The normal

1/3

derivative is exponentially damped in the shadow region g — 6> 3", in good

agreement with (7.1).
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Thus, the only domain where Kirchhoff’s approximation (7.1) — (7.2) fails
10 be accurate is the penumbra region

16— (m/2)] <p7"° (7.15)

where the normal derivative is given by (7.11). The function $(r), which gives
the transition from light to shadow, was introduced by Fock (3).

There remains to be shown that (7.11) goes over smoothly into (7.8) or (7.14)
for | 8 — (x/2)] > B ', The asymptotic behavior of the integrand of (7.13)
in the w-plane follows from Appendix D. It is found that the path of integration,
represented by the straight line D in IFig. 9, may be deformed at will, provided
that it hegins and ends at infinity outside of the shaded sector.

If = >> 1, we may evaluate (7.13) by moving the path of integration to in-
finity in the left half-plane, which leads to a residue series at the poles —z, :

—in/6
§(r) = 2mort YO0 (=€ T ) (r>1). (7.16)
= Ad'(—2,)

On the other hand, if + <« —1, we may evaluate (7.13) by the saddle-point
method. For this purpose, D is deformed to the right over the region where
|w]| > 1, so that the expansion (D.4) can be employed. The saddle point is
located at

W= ¢ (7.17)

Imw

Rew

Fic. 9. Paths of integration for (7.13); @ is the saddle point. X X X—Poles of [47(w)]™.
The path must begin and end at infinity outside of the shaded sector.
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and the corresponding path of integration (' is shown in Fig. 9. The result of
the saddle-point evaluation is

F(r)xdme ™ | rlexp (i r]%/3) (r<&< —1) (7.18)
Substituting (7.16) in (7.11), we get (7.14). Substituting (7.18) in (7.11),

we find
v A(w/2) — 6] . T 1 (~n :
Xf(J) ~ N W exp {’LB [(§ —_ 0) - g (§ - 0) ]} 3 (7'19)

which agrees with (7.8) for § — (x/2) > 7" (but still not too large, so that
B cos 6 is well approximated by the expansion within curly brackets in (7.19)).

Thus, Fock’s function indeed interpolates smoothly between the shadow and
lit regions on the surface of the sphere. However, it cannot be employed in the

lit region too far beyond § — (wx/2) ~ g7

B. Tue NEIGHBORHOOD OF THE SHADOW BOUNDARY

Let us now consider the behavior of the wave function in the neighborhood
of the geometrical shadow boundary, 8 & 4, (cf. (5.2)), at not too large a dis-
tance from the sphere,

r & . (7.20)
Under these conditions it follows from (5.8) and (5.9) that
| exp (2ado)| K 1, (7.21)

so that we need only be concerned with ¢§”, which is given by (6.6).

We have seen that (6.6) has saddle points at X = psin # and X = kp, where
p is given by (6.19). The neighborhood of the shadow boundary is characterized
by the fact that these two saddle points approach each other, moving toward
the point A\ = 8. The main contribution to the integral then arises from the
neighborhood of A = 8, so that it is convenient to take the path of integration

through this point and to split it in the following form:

\'"* i * HPB) i
= =) o L e 0o e
727 J)\(B) (1) (1) IAT/2
+2 o ()8 cos 0)6™ ) (7.22)

2% ]
— f Hi (p) Q1 2(cos 6)e™ ™) dx] = i 4 i + v,
8

where o1 and g, denote the beginning and end points of T, as illustrated
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in Fig. 6, and we have used the identity
HY'(8)/HY (B) = 2J:(8)/HY(B) — 1. (7.23)

In ¢¢3', we may employ the same approximations that led to (6.9). Restricting
ourselves to the main term of (6.11), we find

172
(1 P —ir/4
03 X . e

4 (21r s 0)

. f " (sin w cos w)'"* exp {iplcos w 4+ (w — 8) sin w]} dw.
6o

(7.24)

Above the shadow boundary, the integrand still has a saddle point at & = 8,
as in (6.10). In any case, for § & 6 , the main contribution comes from the
neighborhood of the lower limit of integration, so that we may expand the
integrand around w = 6 and extend the corresponding range of integration to
infinity, with the following result:

1/2 . . o0
W~ (?) ¢ g™ f exp [ikz(w — 60)°/2] dw, (7.25)
T 80

where we have substituted p cos 8 = kz.

The condition for the validity of this approximation is that higher-order terms
in the expansion of the exponent in (7.24) shall be negligible in the relevant
portion of the domain of integration. This leads to the following conditions:

kz > 8%, (7.26)
18— 8| <™ (7.27)
The above result may be rewritten as follows:
WA M () — F(=0))/V/2 (7.28)
where
v = (kz/m)" (6 — 6) (7.29)
and
F(s) = fo exp (in7%/2) dr (7.30)
is the Fresnel integral. Since
F(o) = e™/4/2, (7.31)
(7.28) becomes
w1 g €T .
e L 7 F(—v). (7.32)
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This is analogous to the classical Fresnel diffraction pattern of a straight edge
(19). On the geometrical shadow boundary, where v = 0 (ef. (7.29)), it would
give one half the amplitude of the incident wave, which is a well-known result.

Now let us consider the two remaining terms of (7.22). Since the main con-
tribution to the integrals comes from the neighborhood of A = 8, we may em-
ploy the approximations (A.17) and (A.18), which give

HY (8)/HP(B) ~ ™ Ai(xe ™)/ Ai(ze”™") (A< B), (7.33)
205(B)/H" (B) =~ e Ai(x)/Ai(xe™) (N> 8), (7.31)

where z is defined by (7.10).
For the remaining factors of the integrand, we may employ the same approxi-
mations that led to (7.24), so that we get, with the substitution (6.8),

12 8o

1 1 —ir/4 25 . 1/2

W+l ~ ——( i ) e {e l"/sf (sin w cos w)"
oy 'w

2 sin @

_ Ai(ze ™)
Ai(xermi?)

. oo/ As
irf3 . 1/2 7'(x)

[ sSin w Cos w — e
+ foo ( ) Ai(xer™i3)

exp {tplcos w + (w — 9) sin w]} dw
(7.35)

X exp {iplcos w 4+ (w — 8) sin w]} dw}.

In the neighborhood of 8 = 6,, we may again employ the expansion around
w = 6 that led to (7.25), with the following result:

v _ 4o

¥+ v R —<I;i) ¢ {62”/3[ exp [tkz(w — 6)%/2]
LT 00

Ai(ze %)

ins [ . e Ailzx)
+ [ j;o exXp [lkz(w 0) /2] W dU)} s

where

1/3 1/3 _
xr = <§> p(sinw — sin 6y) = 2 (%) p cos (w ;_ 0°> sin (w 5 00). (7.37)

The discussion of the asymptotic behavior of the Airy function given in Ap-
pendix D shows that values of |z | > 1 do not contribute much to the integrals
in (7.36). On the other hand, p/8'* = g% > 1, so that, according to (7.37),
only small values of |w — 6| give a significant contribution. Under these
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conditions, we may replace (7.37) by
xx(2/8)p cos b(w — ) x (2/8) " kz(w — 6y), (7.38)

where the last approximation follows from 6, x 6.
Making the change of variable (7.38) in (7.36), we find

0
L s A — M g™ exp (im’/2) [ez”/:‘f exp (itx + in'zd)
—o0

) (7.39)
Ai(ze %)

Ai(xe3)
where » is given by (7.29), and
£=(8/2)"(6— 6, n = (8/2)"/(2ke)". (7.40)

According to (7.26) and (7.27), we have || « 1, 7 < 1, so that, in the sig-
nificant range of the domain of integration, the exponential function in the
integrands of (7.39) may be replaced by unity, with the following result:

S+ i~ —Ce B (2rka) TV exp (thz + ind'/2), (7.41)

dz + ei”’sfo exp (i&x + inx’ v (Z(izm) d'vjl

where
0 40 —%inid ,
i/ Ai(ze ) i/ Ai(z)
1/3 . 2im/3 ’ /3 . .
27°C vy dx + e ) Az dx (742)
The constant C has been evaluated by Rubinow and Wu (20) who found
C =~ 0.99615¢"™". (7.43)
It follows from (7.28) and (7.41) that
—iwi4 <2
N S [F(oc) — F(—y) — 2%t w] (7.44)
V2 ™

The conditions for the validity of this result, besides (7.27), are (7.20) and
(7.26), which may be combined into the following condition:

8% « 2 < %%, (7.45)

It is readily seen that, for | » | >> 1, either in the lit or in the shadow region,
the last term of (7.44) is a small correction, of the order of | £, to the amplitude
of the diffracted wave.

Thus, if |0 — 6| < 8", in the domain (7.45), the transition from light to
shadow is described by an angular Fresnel diffraction pattern very similar to the
classical one for a straight edge. The effects of the curvature of the sphere come
in through small correction terms, of the order of |£|. If |6 — 6| > g7
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we go over either to the lit region, where (6.23) is valid, or to the shadow region,
where (5.6) is valid (cf. (5.10)).

Finally, let us consider the immediate neighborhood of the shadow boundary,
where (cf. (7.29))

lv] < 1. (7.46)
We may then approximate the Fresnel integral by the first term in its power
series expansion,

__pcosB(8 — 6,) _ p(sin @ — sin 6,)

(=) g (mwkz)12 (whkz)12 !

and the exponential in the last term of (7.44) may be replaced by unity. Taking
into account (7.31), we get

1) 1 ik 2 1z —in/4 .
¥ Rﬁie’ Zl:l + ( > ¢ *k(rsinf —a — Cﬁ_ma)]. (7.48)

wkz

(747)

Defining the shadow boundary by the condition that |¢| = 14 on it, we
find from (7.48) that the shadow boundary no longer lies at rsin § = a, as in
(7.32), but rather at

rsinf = a 4+ s, (7.49)
where
s = a(Re (' + Im C)/8" = 1.36077a/8"". (7.50)

This is identical to the result found by Rubinow and Keller (21) for a cir-
cular cylinder and by S. O. Rice (22) for a parabolic cylinder, thus confirming,
in the present example, Rubinow and Keller’s conjecture that the result is true
also for three-dimensional obstacles.

There remains to examine the consistency of the various approximations
leading to (7.48). According to (7.47), (7.49), and (7.50), the order of magni-
tude of » at the (shifted) shadow boundary is given by

ks g3
b (whz)1? ~ (whz)r?”

According to (7.26), this satisfies condition (7.46).

It is readily verified that, in the domain defined by (7.27) and (7.45), the
neglected terms in (6.11) and in the approximations that were made in connec-
tion with (7.35) give contributions of a higher order of magnitude.

(7.51)

VIII. THE FRESNEL-LOMMEL REGION
A. Basic APPROXIMATIONS

According to classical diffraction theory, the Fresnel region is the domain,
in the neighborhood of the shadow boundary, viewed from which the obstacle
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contains a large number of Fresnel zones, i.e., r < a°/\, where \ is the wave-
length. We shall now consider the hehavior of the wave funetion in this region,
at distances larger than those allowed by (7.20), 1.e.,

8% < r < Ba. (8.1)

At the same time, we shall stay within the geometrical shadow, or not too far
outside:
8 S 6y~ a/r. (8.2)

We shall call this the Fresnel-Lommel region, because, as will be seen later,
the wave function throughout most of this region can be approximated by
Lommel’s classical solution to the problem of diffraction by a circular dise (23).

According 1o (5.8), (5.9), (8.1), and (8.2), condition (7.21) is no longer
satisfied in this region, but rather |exp (#\.)| = 1. Thus, the integral con-
taining Q2 2(cos 8) in (6.2) can no longer be expressed as a residue series and
we must consider, in the place of (7.22),

/7" e —ix/d s H)(\Z)(ﬁ) (1 Ar/2
Yo = "‘@;) e Ulwm Hy ' (p) Py—1/2(cos )" ™\ d\

72 J AT
+2 fs I—fik—’g% Hy\” (p) Pr-yj2(cos 8)e™™ "\ dx (8.3)

og® ,
- fa Hi”(p)l))\—l/z(cos 8)e™*\ (l>\:| = Yo + Yo + s -

The third term of (8.3), like that of (7.22), depends on the scatterer only
through its radius appearing in the lower limit of integration. Roughly, it repre-
sents the effect of cutting off from the incident wave all the rays that meet the
sphere, so that the sphere behaves, in this respect, like an opaque disc of radius a.
We shall see that this term gives rise to the classical diffraction pattern of a
circular dise. It corresponds to the “shadow-forming wave” mentioned in Section
VII.

The main contribution to the integrals in (8.3) still arises from the neighbor-
hood of A = 8, so that H{"(p) may be replaced by the expansion (A.16). On
the other hand, since we want to consider both the behavior for g9 < 1 and for
30 > 1, we shall employ the uniform asymptotic expansion (C.11) of
Py_a2(cos 8). Finally, in ¢ and o , we may again employ the approximations
(7.33) and (7.34). The results are
0 )1/2 {62“{/3 B8 Ai(xe—2i7/3)

oy 2\1/2
. . Pysrves - A
sin 6 oo A7(xe?I3) exp [(p )

11/01‘4‘1/102%3(
o

Ai(x)

.2 241/2
Tilzer ) exp [i(p \) (8.4)

T ansin™ (Vo) o)A d) + &7 f "
8

+ ix sin™t (A/p)1To(A0)A d)} ,
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where ¢ is given by (7.10) and
Yos  —ip(8/sin 9)* / ) exp {ip[(1 — +5)'*

alr (8.5)
+ 7 sin™ 7]} Jo(pr) (1 — 7°) 77 dr,

where we have made X = pr.

Since the main contribution to the integral in (8.5) comes from the neighbor-
hood of the lower limit 7+ ~ a/r < 87° « 1, we may expand the integrand in
powers of 7, keeping only the main terms:

Yoz X —ip(6/sin 8)"%e* f exp (ipr°/2)Jo(pbr)7 dr, (8.6)
/r

a

where the upper limit has been replaced by =.
According to Appendix E, this integral may be expressed in terms of Lommel
functions. In fact, it follows from (E.5) that

9 \"* o ka’ ka’

where V, and V; are Lommel functions of orders zero and one.
Similarly, in (8.4), we may approximate

(0" = N)" 4 Nsin™ (A/p) X p + (X'/20). (8.8)
Taking x as new variable of integration, we find
N/20 = ka®/2r 4+ (8/2)Pax/r + (8/2)*2%/2p. (8.9)

The main contribution to the integrals comes from |z | < 1, because of the
Airy functions. Thus, according to (8.1), the last term of (8.9) is negligible,
and we find

1/3 12 2
Yoo+ Yoo X1 (g) ;(&%@) exp (iP + ik ;—r)
0 4 .;  ~9in/3 1/3 U3
sins [ Ailze™ ™) (B\"a :I I: <§> :I

an [T Ailz) A8\ a g\13
+e o Wexp[z<§> ;”{'JOI:B()-I-(?) oz | dzp .

Putting together (8.7) and (8.10), we finally get

6 1/2 a2
Yo RS (——) exp(z’kr + zkg) f(s,t,u,0), (8.11)

sin 6
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where

I

f(s, t, u, v)
L{u,v) = Vy(u,v) + iVi(u, v), (8.13)

0 Ai(l‘g—‘lin/.'i)
. Ai(ze )

L(u,v) 4 isF(s, t, v), (8.12)

F(s, t,0) = & e Jo(v + tr) de

. (8.14)
; Ailz)
1r/3 sy \ ., -
+e A Wf J()(l‘,'t‘z)(l.l,
and
s = (8/2)%a/r,  t=(8/2)",
2 v (8.15)
u = ka’/r = Ba/r, v = B0 = tu/s.
Conditions (8.1) and (8.2) are equivalent to
s <1, t <1, u > 1. (8.16)

According to classical diffraction theory, the wave function in the Fresnel
region due to the diffraction of a plane wave by a circular disc of radius a is (23)

2 2 2
Yo = €xp <Zk? + ik %) [Vo <]%, 3 sin 6) + V1 <k_}a_ , 8 sin 0)] , (8.17)

in the approximation where sin 6 X 4. In this approximation, (8.17) coincides
with (8.7).

Thus, in (8.12), L(u, v) represents Lommel’s approximation, while F(s, ¢, v)
is a correction to classical diffraction theory of the same type as the Fock terms
discussed in Section VII.

B. Beuavior oN THE Axis (Poisson Seor)
For 8 = 0 (» = z), we have, according to (E.3),
L(u,0) = 1, (8.18)
so that
Yo X exp (ikz + ik g) f(s), (8.19)

where

o pwm g awEy R Al )
f(S) =14 4s [62”/3 _A_-?Sﬁ_) & de + ewr/3 A’L(.L) o dx:l (820)

o Ai(ze™i"/?) b At(xe?n/3)

In Lommel’s approximation, the second term would be absent, so that we
would have | ¢o| = 1, i.e., the intensity along the axis would be identical to
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that of the incident wave. This corresponds to the well-known Poisson spot.
According to Appendix D, A7(ge™*) /Ai( ce ™) goes to zero like

exp [—44 | ¢ | ¥ sin (3¢/2)]

when ¢ = | {]exp (ig) goes to infinity in the sector 4r/3 < ¢ < 2=, so that
the path of integration in the first integral of (8.20) may be rotated by #/3 into
the fourth quadrant, with the following result:

Ai(x) .
iGae 7o)
+/ AAl(x) exp (z's;v)f]-l']-

Z( e"z1r/3)

) da

f(s) =1+ ise”/s[
0 (8.21)

Both integrands now tend to zero like exp ( —442°") for z — .

At distances z << 8%a (s >> 1), the residue series representation (5.11) should
converge well, so that the wave function must become exponentially small. To
recover this result from (8.21), let us note that, by partial integration, (8.21)
becomes

im/8

sx) e’ f ® exp (isz) 59
dx + S o AT de, (822)

—i7/3

—57 /6 @ .
e exp (—1e
f(s) = or '/0‘ [Ai(xe2m3)]2

where we have employed the Wronskian relation (D.2). This result may be
rewritten as

1(s) = l/ﬁ _exp (is¢) ¢ (8.23)
27 Jr [Ai(fe¥ 3))? -
where T is the path shown in Tig. 10, going from «e"™* to o,

If s >> 1, the integral can be evaluated by reducing it to a series of residues

at the poles ¢, = ¢™’r, , where —u, is the nth zero of the Airy function. The
result is
1(s) = s Z exp (i ’szy) (824)
- [Ad'(—z)] ~

Substituting this in (8.19), we find
2 1/3 . 3mw/3 o3y 1/3
s —inlf . L @\ (BY" a5~ exp lie 1.(8/2) "a/z]
e e (”“Z T 22) <§> R VT (8.25)
(2 < 8%%).

It may readily be verified that this result coincides with the term m = 0 of
(5.11), with z > a. Thus, the wave function along the axis is exponentially
small for z < 8"a.
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Imt¢

r /

2‘"‘(-3\/\7’/3
/
Ret

Fi1a. 10. Path of integration in (8.23). X X X—Poles of the integrand. The integrand
goes to zero at infinity outside of the shaded sector, except along the line of poles.

On the other hand, for z > 8'°a (s << 1), we canexpand f(s) ina power series,
f(s) =14 isD. i"M,s"/n! (8.26)
n=0

where, according to (8.21),

1 i Aix) i@t/ Ai(z) . 9

M, =e AYerh i dr + e v e 2" de. (827)

The first few coeflicients 3, have been computed by Wu (24). In particular,
My = 2'°C = 1.2551e"°, M, = 0.5323¢"™" (8.28)

where C is given by (7.43).
Substituting (8.26) in (8.19), we get

2 1/3 2/3 2
Yo exp <ikz + ik “—) [1 + M, (9 g7 (9> ¢4 }
2z 2 z 2 22 (8.29)

(2> 8%%).

Thus, for z >> 8"a, the intensity approaches that of the incident wave.
On comparing (8.29) with (8.25), we sec that a Poisson spot of intensity
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comparable to that of the incident wave begins to develop at a distance
1/3

2~ g"a (8.30)
from the sphere. This is in contrast to the case of a circular disc, where the Pois-
son spot begins to appear at a distance z ~ a from the plane of the disc (4, p.
103).

C. BEHAVIOR AWAY FROM THE AXIS

Let us consider first the term L(u, v), which corresponds to the classical dif-
fraction pattern (cf. (8.13)). The behavior of this term depends on the parameter

u/v = a/rf X 6o/ 8. (8.31)

In the lit region, 8 3> 6y, we can employ the expansion (E.1), which leads to
. 2 2
L(u,v) = exp l:—% <u + v_)] + i?—LJl(v) + <-7’f> Jo(v) + -
2 % v v

(u < v).

The corresponding eclassical wave function, according to (8.11), would be

1/2 . 02
) oo

2
+ ir%eXp ('ip + 1k %) J1(B8) + } X exp (ipcos8) (0> a/r)

(8.32)

(8.33)

so that Y. approaches the incident wave.
Near the shadow boundary, at § = a/r, we can employ (E.2), which gives

L(u,w) = %™ + Jo(w)], (8.34)
so that

YA ( . a < a <ka2 ]
Yor 5 (Sm———0> exp |l ip — ik Z‘) [1 + exp | ik - Jo - (835)
(8 = a/r).

The factor s corresponds to the classical behavior at the shadow boundary
discussed in Section VII. For r 3> 8°a, the shift of the shadow boundary is no
longer given by (7.50) : it increases with » and then oscillates. At distances r ~ ga,
which mark the transition to the Fraunhofer region, the concept of shadow
boundary is already meaningless.

Finally, well within the geometrical shadow region, 8 << 8, we can employ
the expansion (E.6):

v
U

L(u,v) = Jolv) — i%Jl(v) — ( >2 Jov) + - - (u > ), (836)
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which gives
1/2 2
g . o &
L —— exp|ip + 2k =
Yo X (sm 0 AN 2r
0\

-[Jo({)’@) - ng(Bf?) - (—) J2(B80) + :l (6 L afr).

a

(8.37)

Now let us consider the effect of the Fock-type terms F(s, £, v) in (8.12). Just
as in (8.21), we can rewrite (8.14) as

F(s, t,v) = eiW/sI: ° Aia)

. —im3 w8y .
) Aize ) exp (—ie "se)Jo(v — ¢ ) due

(8.38)
Ai(x)

o Ai(xenl)

In the shadow region, for » < 8"%a (s > 1), it can be shown, as in (8.25),

that 4sF (s, ¢, v) cancels the main term in L(u, v), leaving as a remainder a resi-

due series corresponding to (5.11).

Forr > %% (s < 1) and 9 < 87 (1 « 1), the main contribution to the in-

tegrals (8.38) arises from small values of the argument, because of the Airy
functions. Therefore, we may employ the expansion

exp (isz)Jolv + tx) de

Jo(v + tx) = Jo(v) — taJ1(v) + - - (8.39)
and similarly for the other term, with the following result:
isF (s, t,v) = [f(s) — 1Jo(v) — lg(s)J1(v) + -~ (s S L tK1), (840)

where f(s) is given by (8.21) and

s dm3 ® Ai(x)
g(s) = ise I:o Aiadoh)

exp (isz)x dex — ¢

Ai(x)
o Ai(xe%ini3)
In particular, if also s < 1, we may expand the exponentials in power series,
and we get, with the help of (8.27),

F(S, i, U) ~ (A-[u + iMs + - )Jo(l’)

— MaJ(v) + - (s 1,tx1).
Taking into account (8.11) and (8.37), this leads to

N 0 1/2 - ._(12 ) 6 1/3a ’ B 2/3 a 2
Yo <§*0> exp (zlﬂ + ik _2—7”> {[1 + M, <§) - M, <§> <;) —+ ]
8 B la\ 70
X Jo(BO) — i [1 + M, <3> (7—> + ] 5 Ja(80) + } (843)

(r> 8"%a,0 <K a/r).
Note that (8.29) is a particular case of this result.

. (841)
exp (—ie *sx)x dx] .

(8.42)
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In the neighborhood of the axis, for » > 8"%a, the intensity, according to
(8.43), behaves like J,°(86) times the intensity of the incident wave, so that the
Poisson spot actually corresponds to a “Poisson cone” of angular opening

6~ 8. (8.44)

In this region, the Fock terms give only a small correction, having the same
angular dependence as the Fresnel-Lommel approximation.

Finally, if 8 > 87"°, we must recover the reflected wave, given by (6.23). It
can be verified that it arises from a saddle point in one of the Fock terms. How-
ever, we shall not discuss this problem here; the analogous but simpler case of
the far field will be discussed in the next Section.

IX. THE SCATTERING AMPLITUDE
A. BEHAVIOR AwWAY FROM FORWARD OR BACKWARD DIRECTIONS
I'or r — », we have
Y, 0) x ™ 4 f(k, 0)e™ /v, (9.1)
where f(k, 8) is the scattering amplitude. If 6 is not too close to 0 or =, f(k, 6)
may be obtained from the expressions derived in Section VI, which remain
valid for r — «. Actually, the asymptotic form (9.1) is already valid in the
“Fraunhofer region” defined by r >> Ba (cf. Section VIII).
According to (6.19) and Fig. 7, the angle & approaches zero as » — =, so
that { — 6/2 in (6.20) and the saddle point approaches
X = kp = Becos (8/2). {9.2)

This eorresponds to the geometrically reflected ray in the direction 8, as shown
in Fig. 11.
1t follows from (6.23) and (6.24) that
f(k, 8) = fu(k, 0) + fres(K, 0), (9.3)

where

f.(k, 0) = %ezp(—%ﬁ sin-ﬁ) 14+ ! + .. (9.4)
2 2 . .0
28 sin®

is the “reflection” amplitude and

—ir/6 O Z e . —1/2
fres(ky 0) = € 5\3s (7 sin 8)

—ir An 6
S b S 0m D e

. I:exp <z)\,. Ym 4+ ) -+ exp (z)\ o — g)jl},

(9.5)
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@

8,
CJ/2

Fii. 11. Geometrically reflected ray in direction 6.

where, according to (3.7) and (5.8),
Y = 2mw — 6, 8. = 2mmw + 6. (9.6)

The main term of (9.4) corresponds to the geometrical optics approximation,
whereas (9.5) represents the radiation from the surface waves.

The expression (9.4) was obtained as a limiting case of (6.23), so that it repre-
sents the contribution from the neighborhood of the saddle point (9.2) in (6.6)
or {6.31). It may also be derived by substituting directly in (6.6) or (6.31) the
expansion

1/2
HP(p) ~ <g) exp |:i (p - )\g — E)} (p— =), (9.7)
T 2 4

which leads to

. (2)
f:(k,0) = ;— A (B) U (cos @)\ d. (9.8)

i Jr P (8)

As in (6.6) or (6.31), the path T crosses the real axis at the saddle point
(9.2), at an angle of —=/4 (Fig. 12). Since the main contribution arises from the
neighborhood of this point, the path of integration may be extended to infinity
on both sides, provided that the integral converges.

According to Appendix A and (C.7), the integrand of (9.8) behaves at in-
finity like exp [?A(27 — 6)] in region C of Fig. 12 and like exp ( —iA6) 1 region
A. Thus, for 8 # 0, the path T may begin at infinity in C and end at infinity in
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I‘m A

Re\

X
/
X
/ -Tw

Fig. 12. Paths of integration for (9.8). X X X—DPoles of S(A, £).

A. In particular, it is equivalent to the path I" of Fig. 12, which is taken to be
symmetrical about the origin. This will be useful later on.

Substituting (6.14) and (C.7) in (9.8) and employing (6.21), we are led
again to (9.4).

The result (9.4) can no longer be applied when the correction terms in the
expression within brackets become comparable to the main term, i.e., for § <
87, Furthermore, the asymptotic expansion (C.7) of Qi 2(cos 8) for = = — e
is only valid for | xe| >> 1 or, with A = X = Bsin (¢/2) X Be/2, for e 3> g%
Thus the conditions for the validity of the above results are

68" -8 (9.9)

In the next sections, we shall examine what happens near the forward and
backward directions, when these conditions are no longer satisfied.

B. Tae NEIGHBORHOOD OF THE ForRwaRD DIRECTION

Let us consider first the neighborhood of the forward direction, defined by
9 < 87", In this domain, not only does (9.4) lose its validity, but also the residue
series involving 8’ in (9.5) is no longer rapidly convergent, so that we must
make a rearrangement similar to that of Section VIII, namely,

f(k, 8) = folk, 0) + Jres(E, 6), (9.10)
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where, according to Section VIIT and (C.11),

1/3
f,es<k,e>=e—““‘a(§> (L> Z( 1)'"ZM@JJO<Ano'>, (9.11)
sin 6/ m=ti —x)]?

and fo(k, 9) is defined by
v e+ folk, 0)e*/r (r— %), (9.12)

where ¢4 is given by (8.3).
Since (8.10) remains valid for » — =, we find at once that

ikr 1/3 1/2 —27,1r/3
- (4 ,3 7] 2:7w/3 A’L(
Yot Yo S0 7 ¢ (E) <sin 0) {e oo Az(lez”'“)

13 i {
X Jo [59 + @) Sx] dz 4" | ﬁ;{ij—)ﬁ_) (9.13)

X Jo [Bo + <g>m o,n] dx} (r— ).

According to (8.3), we have

1/2 . a0 B )
'¢'03 = (%) 8_”/4 ([ —_ -/. > Hﬁl)(p)P)\—l/z (COS 0)8“”/2)\ d)\. (91‘:‘:)
Z 0 0

In the integral from 0 to 8, we can replace H\"(p) by its asymptotic expansion
for p — e, so that

1/2 A
Yos %% )—f Py (cos 0))\ d\ + <2p> PR

o (9.15)
X f H{" (p)Py—1» (cos 8)e™""\ d\ (r — o).
0
On the other hand, since
e?ir)\
tan (77)\) =1 — 2 W, (9.16)
it follows from (2.34), with ¢ = os (cf. Fig. 2 and Iig. 6), that
_ 12 powe 4
P — <21> e f HS" (p)Py—12 (cos 8)e™*\ d\ — A, (9.17)
I3 )
2\ w1 o, amp €
Alp,0) = (=) e Hy' (p)Pyx—2 (cos 0)e —_Ad\x. (9.18)
p o 1 + e2l7r}\

In the last integral, the path of integration has been shifted to the positive
imaginary axis, which is allowed because of the extra convergence factor
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exp (2imA)}. Substituting (9.17) in (9.15), we get

Yz X e 4 7—-f Py—1;2 (cos )N dN 4+ A (¥ — = ).

(9.19)

The second term of this expression can be cvaluated by inserting for
Pr_ipa(cos 8) the uniform asymptotic expansion (C.11) and integrating term by

term with the help of the well-known formula

/Q'_n+1v]n(?l‘) dr = _I—"_HJn_l(.l‘).

M(.—" > ["1(‘”) o )]
sin 6

On the other hand, making A = du in (9.18), we find

o 1/2 w0
A < <%r> f e PV HG (p) ]| Prucaye (c08 8) | €4 d.
b

The result 1s

I

i B
- / Pr—1js (cos @)\ dA
k Jo

(9.20)

(9.21)

(9.22)

According to Watson (25), we may employ, for all g = 0 and p > 1, the

asymptotic expansion

1/2
HO (o) ~ (;) (o + )

-exp {i I:(p2 + )Y — psinh™ £ _:| 7”‘1
e 2 f

1/2
2 5 (2) e
P

Furthermore, according to (C.12),

so that

| Pigapp(cos 8)] < (cos 8) %™ (06 <7/2).

Substituting (9.24) and (9.25) in (9.22), we find

8] < oy (cos 025 (r = ).

(9.23)

(9.24)

(9.25)

(9.26)

Since we are only interested in the domain 8 < 7', it follows from (9.19),

(9.21), and (9.26) that

X 1/2 ikr
Yo & €7 4 ik’ (L> [‘]1(59) + 0(6_2)] ]

B0

sin 6

(9.27)
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Combining this with (9.13), we finally obtain

zka o\
folk,0) ~ 5 <W> lga(k, 8) + ge(k, 8)], (9.28)
where
ga(k, 6) = 2J1(86)/66, (9.29)
gelk, 8) = (2/8)"°F(0, (, v), (9.30)

F{s, t, v) being defined in (8.14).

Except for the substitution sin § — 6, which is allowed in this order of approxi-
mation, (9.29) coincides with the classical Fraunhofer diffraction pattern of a
circular disc or aperture (26). The other term gr may be called the Fock corree-
tion term (27).

The forward scattering amplitude is obtained by setting 8 = 0 in (9.28):

folk, 0) = ¥gika*(1 + 20677 + ...y, (9.31)
where (' is given by (7.42) and (7.43). This result also follows from (8.29), by
taking z >> Ba.

The total cross section is obtained from (9.31) with the help of the well-
known “optical theorem”

4 o
v = /_frlmf(/;,m = ra’(2 + 1.992387%° + ..., (9.32)
where we have employed (7.43).
This result was first derived by Rubinow and Wu (20). Higher-order terms
in the expansion in powers of 87 have been computed by Wu (24) and by

Beckmann md ¥ranz (28). They involve the coefficients A7, defined in (8.27).
If 6 < 877, we may employ (8.42) with s = 0. The result is

o Loof 8 NP J.(88) <2 w3
folk,8) = Ellxa <sin 0) {2 5 + 3
B 1/3
. I:MoJo(BB) - M, (;) 8J.(p8) + :I}

— Lika{2 { JilBO) o g2ty 99931, (88)

(9.33)

+ 0.670661/30111(30) —|— - ]} (0 & 6_1/3),

where we have employed (8.28). This is also a limiting form of (8.43) for + > Ba.
The first term of (9.33), which gives rise to the well-known forward diffraction
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peak, dominates throughout the region 8 << 87'*. The corrections are of the
order 8.

If 8 becomes 3>, we must recover (9.3). To show this, let us rewrite
F(0, ¢, v) as follows (cf. (8.14) and (8.21)):

Ai(z)

—in3_ ,
A W]@(U — {e .l/) d.l

e R0, 8, 0) =

Ai(x) (9.34)
Ai(a

+ f Az(xemls) Jo(v + tz) dx.

Let us make the decomposition: Jo = [HS 4 H{?]/2 and substitute z = ¢ 7%

in the first integral in A §V. employing also the relation (D.3).
The result is

Az(z)

@, g i3 !
m i (1) te .L) dx

2¢ "R (0,t,0) = [
40

Ai(z)

/L(:l' 2L1r/3)

Az(z)

)
A ver o) HY (v + te) de (9.35)

& (v +tx)dx+fA

6_“,/3 0e217/8

1

+0 [ PG,
v

where T is the path of integration shown in Fig. 10. This path can be closed at
infinity, reducing the integral to a residue series

[~ = <—2—> “ ”E—exP(w t2) (9.36)
T

(0 = (AT (—x)]’

where —2z, are the zeros of the Airy function and we have replaced H" by its
asymptotic expansion.

Since v 3> t >> 1, the Hankel functions may be replaced by their asymptotic
expansions also in the other terms of (9.35). By partial integration, we find

J

The asymptotic expansion of the second term of (9.35) can also be obtained
by partial integration. The first term has a saddle point at

0e2iT!3

. 1/2 .
HP (2) do = &4 (%}) e[l + 0(v™HL. (9.37)

i = e™/4, (9.38)

as can be verified by replacing the Airy functions by their asymptotic expansion
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(D.4). In addition to the saddle point, we must take into account the contribu-
tion from the lower limit of integration. The result is

A?;(]?) (2)
) AiCeezmmy o (7

a2 .3
Ai(z) Dy + tr) de ~ <?) e exp <—iv + %) (9.39)

+/ Ai(xe®™h3)
2 1/2 e—-in’/& i -
#(5) e[ (D]

where the first term represents the contribution from the saddle point and the
second one those from the lower limits of integration.
It follows from (9.85) to (9.39) that

NEASE . it 1/2\"” 3r
) ~ 5 ( - -] 7\—= - =
F(0,t,0) ~ ¢ (20) exp < w+ 12) ; <1rv> cos { v 1 )

g™ ) exp (i + 1¢™*z,)
(21rv)”° [Ad(—z.))?

Substituting this result in (9.28) to (9.30), and replacing J,(86) by its asymp-
totic expansion, it is found that the main term of this expansion is cancelled by
the second term of (9.40), leaving us with

1/2 8
fo(k,0) & =5 (Eﬁ.‘o) exp {‘2” [% - 311 @ ]}

oz & (2 " exp (1M, 9) —1/3
e §<t§> (7 sin ﬁ?)l/f“Z (A7 (— 1) (6> 87").

— 1773 da

(9.40)
4+ - (>t > 1),

(9.41)

The second term is identical to the residue series involving & in (9.5). The
exponent of the first term is the expansion of —2i8 sin (6/2) up to the term of
order 86°. Thus, in the domain where 86° >> 1 but the next term in this expansion
can be neglected (and at the same time 6/sin 6 &~ 1), the first term of (9.40)
coincides with the main term of the reflection amplitude (9.4).

Therefore, (9.10) goes over smoothly into (9.3) when 8 becomes 3> "* but,
just as was found in Section VIII, the Fock functions cannot be employed for
too large values of §. Their angular domain of validity is just suflicient to make
a smooth transition.

The transition from the forward diffraction peak to the region of geometrical
reflection takes place in the domain 6 ~ g7, In this domain, we must employ
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the expression (ef. (9.10), (9.11), (9.28) to (9.30) and (9.34)):

- _1.‘2 0 1/~( J1(88) < 2,3 o Aile)
k0 = i () ot [ s
—nn (BN N e i)
Jo <69 — e <z> m) de + /0 T
13 13 ¢
Ji (ﬁe + > )d;] - } + ¢ <§> (942)

1/2 . ®
. ( 10l ) Z N E e\p _zmqr)\n) Jo08)

sin 6 ‘ n)]
(0 < g < »6_1/3);

~

where, for § ~ 87", the Fock-type functions should be computed by numerical
methods. Some related functions have already been tabulated (22, 29), but
there seenm to exist no tables for those appearing in (9.42).

C. Tue NEIGHBORHOOD OF THE BACKWARD DIRECTION

There remains to consider only the neighborhood of the backward direction,
i.e., according to (9.9), the domain

6 =m — ¢ e < B (9.43)

The expression for f(k, 8) in this domain may be obtained similarly to (9.8),
by substituting (9.7) in (6.30) and (6.35):

J(k, 6) = fe(k, 8) + fres(k, 8), (9.44)
where
Goo (2) .
folk,8) = /\_ | Z{I)Eg; Proyjs(—cos 8) tan (zN\)e ™A di, (945)
fres(k,0) = =12 Zx n'n(8) Py, ,,.(—cos 6). (946)

7 COS TA,

The path of integration in (9.45) is the upper half of the path I’ shown in
Fig. 12. Actually, (9.45) can also be obtlained from (9.8), by taking the integral
along the symmetric path I and then applying the same transformation that
led from (6.30) to (6.31).

Substituting (2.18), (3.16), and (9.43) in (9.46), and employing the uniform
asymptotic expansion (C.11), we get
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) 3 1/3 ¢ 1/2
frcs(l‘:y (i 6) x~ _61”‘/3(1’ 3 —_—
2 sin €

. S ) exp [#(2m —f— 1)\,
mg() (- ; A1’( )]

which ix also a limiting case of (6.38). In particular, if € 3> 87", we may replace
Julhe) by its asymptotic expansion and (9.47) goes over into (9.5), ax may
casily be verified.
In (945}, we may employ the expansion (6.14), which remains valid even
1N K d. According to (9.2), the main contribution to the integral arises
f1'0m the neighborhood of the lower limit, i.c. from the domain

=1
e

(947)

]r)(:)\"e),

x| <8 (9.48)

Thus, we can expand the exponent and the other terms of (6.14) in powers of
/B, with the following result
—ir 4 y « =27 . .)\4
e HY (B)/H(B) = e exp (—iN'/g) <1 +4—5 Z‘w + ) (949)
where we have kept all correction terms up to the order 87°, according to (9.48).

On the other hand, Px_ip( —cos 8) = Py_ip(cos e) and, according to (9.43)
and (9.48), the relevant portion of the domain of integration corresponds to
| Ae| < 1, =0 that we may employ the expansion (C.9).

Making the change of variable appropriate to the steepest descent path (cf.
Tig. 12)

A= T = g, (9.50)

we finally get from (9.45)
Tk, 7 — €) = dae ™" [(1 + ﬁ)f exp ( —2)Jo(wr) tan (rax)r de

+ éfo exp (—z")Jo(wr) tan (raz)z’ dr + g sin® &

Xf exp{ —2")Js(wz) tan (rax)a® de — sin® (9.51)

2 €
9
Xf exp( —2")J2(wz) tan (wox)x dx + -sm 2E

2

X f exp (—2")Jy(wz) tan (rax) dv + O(B*Q):|,
o
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where
w = 2" win (e/2) = 2asin (e, 2) (9.52)
and the upper limit of integration has been extended to =<, since large values of
@ give no significant contribution. Note that |« | < 1 according to (9.43).
The evaluation of the integrals appearing in (9.51) is taken up in Appendix F.
The result is given by (I".13). Expanding o’ = —4i8 sin® ¢/2 in powers of ¢ and
taking into account (9.43), we finally get

T Y | P
eXp[ M(l 8)] [1 +26 192+0<6 )} (9.53)
(0 e @),

fellk,m —e) = —

W R

As may readily be verified, this result coincides with the expansion of (9.4)
in powers of €, within the domain ¢ < 7% Thus, (9.4) is uniformly valid up
to 8 = . This had often been assumed in previous work, on account of the
regularity of (9.4) up to 8 = =. Obviously, however, such regularity constitutes
no proof of the validity of (9.4), since the asymptotic expansion (C.7), employed
n its derivation, is no longer applicable in this domain,

Since (9.47) also remains valid for e 3> 87, we conclude that

, __a YR AY B -+
f(k,0) 5 exp < 218 sin 5 28 sin® 8
2
1/3 _ 1/2 .
_ ey, <§> <1r' 0> (9.54)
2 sin

~ ~ym s exp [12m 4+ 1)mh,] B
Xm;o< 1) ; [Ai'(—;r,,)]? JO[)\n(.ﬂ' 0)]

uniformly throughout the whole domain
1« (9.
Together with (9.42), this determines the behavior of f(k, 6) for 0 £ ¢ =< 7.

D. Direcrt TRANSFORMATION OF THE SCATTERING AMPLITUDE

The expressions for f(k, 8) employed in the above discussion were obtained
by letting r — o in the representations previously derived for y(r, #). The
advantage of this method is to make clear the connection between the behavior
of the wave function in the near and in the far regions, as well as the physical
interpretation of the various terms. However, one may ask whether it is possible
to bypass the limiting procedure and to derive the same results directly from
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the partial-wave expansion of f(k, 8),

Ik, 6) = IZ (21;7 D [8:(k) = 11Pi(cos 8), (9.56)
0
where 8, is given by (2.3).

It 1s well known (30) that Watson’s transformation, in the form usually
applied to Yukawa-type potentials, cannot be applied to (9.56) in the case of a
cutoft potential (including, in particular, the case of a hard sphere). This is ex-
sentially due to the asymptotic behavior of the S-function as [A] — =«
jarg A | — w/2.

Modified versions of Watson’s transformation have been employed for this
purpose (31, 32). However, the proposed modifications still lead to singular
integrals,” so that the difficulty is not overcome.

It will now be shown that it is indeed possible to derive all the representa-
tions for f(k, 8) employed above directly from (9.56).

Let us start by applying Poisson’s sum formula (2.12):

b

f(k,8) = T m;w( 1)’"[ 1 — SO\, E)Prya(cos )€™\ dX,  (9.57)
where S(), k) 1s given by (3.1). It follows from (2.15) that
S(=X\ k) = ™S\, k), (9.58)
so that, making A — —X in the sum from m = —1to — =, we get

. -] h)
flk,0) = % (=)™ {f (€™ — S, k)1Py—12(cos 8)& ™™\ dn
m=0 -0
. (9.59)
+ f [1 — SO\, k)IPy—ya(cos 8)¥ ™™\ d)\} .
0

Note that
™ — S\ k) = 2™ (8)/HAY (). (9.60)

According to Appendix A and (C.8), the integrand of the first integral in
(9.59), for all m = 0, goes to zero at least exponentially for |A| — = in the
second quadrant. Thus, we may shift the path of integration to the positive
imaginary axis, from i to 0. Writing

™ — S E) =8 — 141 — SO\ k)

5 Cf. Egs. (26)-(27) and the related discussion on p. 328 of (31) and Eqgs. (5)-(8) and (48)
of (32).
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in the correspouding terms for m = 1, and employing the identity

= m 717r)\ 2{mNT 20N 2 '
-1 =¢ —_— =1 9.61
2 (= e ¢ <1 F oo > (9.61)

we get
j(ky 0) = f('(l\‘; 0) + j;res(_ky 6); (962)
where

;

foll,8) = & [ 10 = SO, B)Pacaacos )X d)
L 0

.0 (9.63)
- %f S\, k) Py—yja(cos 8)N dN + A,
.),L- 0 24T\ ‘ |
A = I - W P)\——l/’.z(COS 0))\ (l)\, (964)
Jres(k, 8) = ; Z (— 1)mf 1 — S\, k)]Pyya(cos 8)e"™\ di, (9.65)
¢ m=1

and (' is the path shown in Fig. 13, going from ¢« to 0 and from 0 to =.
It follows from Appendix A that this path may be closed at infinity in the
first quadrant, so that

2 o0 . o ) ‘
Toes(k, ) Z (=1)™ 2" Narw exp (2imah,) Py, —12(cos 8), (9.66)
m=1 n=1

where \, are the poles of S(\, k) and r, are the corresponding residues, given by
(3.14). This corresponds exactly to (9.11).
On the other hand, we may rewrite (9.63) as

Jolk, 8) = fo + foo + fus, (9.67)
where
. 0 B\ 77
foo + foo = L—<f -+ f >H)(\1)<B Py—12(cos 8)N d\
e S (9.68)
2% J(B)
E s H()i)(ﬂ) P)\—l/z(COS 0))\ d\
and
i (* .
fu = % | Proaaleos NN+ A (9.69)
]

The first integral in (9.68) may also be taken along the path ¢’ from oy to
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3 shown in Fig. 13. Since the main contribution to both integrals arises from the
neighborhood of A = B, where we may employ the approximations (7.33) and
(7.34), we wee that (9.68) corresponds to (9.13). Similarly, (9.69) correxpouds
to (9.19). Just as in (9.26), it can be shown that

8

A ——
(Al s 9m2k(cos 6)'2’

(9.70)
s0 that the contribution from A; , which is independent of a, would be included
in the correction term of order 87 in (9.27).

Thus, (9.62) leads to the same results as (9.10) and is the appropriate splitting
of f(k, 8) in the domain § < g%

Now let us consider the domain 6 3> 87 In this case, the integrals containing
Q21 2(cos 8) in (9.63) can also be reduced to residue series. For this purpose,
let us add and subtract the (convergent) integral

0
f Qi (cos )N dn
1%

and rewrite (9.62) to (9.65) as follows:

J(k, 8) = fu(k, 0) + [rs(k, 0), (9.71)
where
fres(.ky 0) = .FFPS(:ka 9) + (2'”/’//\")2 xnrn(qz;\i—)—l/:}((,'OS 0), (972)
n=1

fres being given by (9.66), and
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.0
Sk, 0) = “%f [SON, )@ /2 (cos 8) + Q37h 2 (cos 8)]N dA
1 . o (9.73)
+ %l [1 - S(xy k)] 7(\1—)1/2(005 0))\ d)\ + AI .

From the discussion given in connection with (9.8) and (9.59) and from (C.7)
it follows that the path of integration in the first integral of (9.73) may be de-
formed away from the imaginary axis into the second quadrant, so as to coincide
with the upper half of the path I' in Fig. 12. Similarly, according to Appendix
A and (C.7), the path of integration in the second integral may be deformed
within the region A of Fig. 12, so as to coincide with the lower half of I"". This
leads to

Fulk,6) = =1 [ SO, kD@8 (cos 6N an
: 0 e?iar)\ (9'74)
- [ 212 (c0s 8) + Q_1/2(cos8) — 2ij¥;a;;lﬂ—u46080)]k dn,

where the integrals are taken along the path I''. We have also made A — —\ in
the integral of Q2};, and employed (9.64) (with the path of integration shifted
to T').

It follows from (C.5) and (C.6) that the expression within square brackets
in (9.74) is identically zero, so that we are left with

5 0) = =1 [ S0, 1)@ (cos O (9.75)

in exact agreement with (9.8). Since (9.72) also corresponds to (9.5), we see
that the splitting (9.71) is equivalent to (9.3).
Furthermore, just as in (9.45), we may rewrite (9.75) as

fe(k, 6) = —%f SN, k)Py—1s( —cos 8) tan (xA)e "™NdN  (9.76)
0
and, with the help of the identity (6.33), we may rewrite (9.72) as
fres(k, 0)

*® * (9.77)
= —(2ri/k) 2, (—1)™ 2 Mrm exp [i(2m + 1)wN, )P, —1/2( —cos 6),
m=0 n=1
which, according to (2.18), is equivalent to (9.46).
The results (9.76) and (9.77) remain valid up to § = 7 and correspond to
those employed in (9.44). In this form, the splitting (9.71) may be employed
for 70 < § < 7.
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In conclusion, according to (9.62), (9.64), (9.66), (9.67) to (9.69), (9.71),
(9.76), and (9.77), the modified Watson transformation may be expressed as
follows:

) = 1 [ SO,k Pcantcos o an 4+ [ 11— S0, 1))
3 622'1(?\

. 3 .
) 2
X Pr-a(cos 6 dX + ;fo Pra(cos Mk + 7 [

(9.78)

X Pr—y2(cos )N dN + 2% D (=)™ 2" Narw exp (20mahg) Py, 1/2(cos 6),
m=1 =

n=1

where the path € is shown in Fig. 13, and

. 0
f(k, 8) = % f S{X, k) Pr—yo{ —cos 8) tan (#n)e”" ™\ dx
) " . (9.79)
= S (1) 2 Mt exp [i(2m + 1)mhIPye (—cos 0),

where the integral may also be expressed in the equivalent form (9.75).

Both of these representations are exact and their terms have a direct physical
interpretation, as discussed above. They may be employed to obtain higher-
order corrections to the results derived in the present section: (9.78) should be
employed for 0 < ¢ < 67 and (9.79) for g7° < 6 = .

X. CONCLUSION

The main results obtained in the present work may be summarized as follows:

(i) The high-frequency behavior of the wave function in scattering by a
totally reflecting sphere may be completely determined, both in the near and in
the far regions of space, by means of a modified Watson transformation, based
upon Poisson’s sum formula. Each term in the transformed series has a direct
physical interpretation. This procedure has the advantage that it does not require
a reevaluation of the whole residue series in going over from the shadow to the
lit region, but only of that part of the lowest-order term that would not corre-
spond to a rapidly converging series, thus showing clearly the connection be-
tween shadow and lit region.

(ii) It is necessary to apply different representations in the forward and
backward half-spaces. It is already clear from the singularity of Pa_ips(z) at
z = —1 that one cannot have a single representation for all values of 8: one
needs a representation in terms of Px_j;2(cos 8) near § = 0 and one in terms of
Py_12( —cos 8) near § = 7. The present treatment is based upon the integral
representations (2.34) and (2.35) of the primary wave. In the forward half-
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space, we employ (2.16) and (2.17); in the backward half-space, we must
employ (6.29), (6.30) and (6.34).

(iii) A rigorous proof of Watson’s transformation is based upon a study of
the behavior of the integrand for |A| — =, argX — x/2, as well as of the
asymptotic behavior of the poles and their residues. It follows from this discus-
sion that the residue series (4.15) converges in the whole forward half-space
0 £ 6 < w/2, but it is only useful in this form in the domain where it is rapidly
convergent, i.e. within the shadow region. This happens in the domain r <«
8%, 8, — > g where 8, = sin”" (a/r) is the shadow boundary angle. This
domain, which may be called the deep shadow region, is represented by the
shaded area in Tig. 14.

(iv) The wave function in the deep shadow region is given by (5.7), which
represents a superposition of “diffracted rays” arising from the surface waves
associated with the poles of the S-funetion in the complex angular momentum
plane. These poles do not show the typical Regge behavior associated with
Yukawa-type potentials. The physical interpretation of these terms is in agree-
ment with Keller’s geometrical theory of diffraction: they give rise to an ex-
ponentially damped wave function in the angular variable. However, this
interpretation can be applied, at a given frequency, only to the lowest-order
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poles, and loses its validity when the damping within one wavelength becomes
appreciable. The higher-order poles, however, give a negligible contribution.
The exponential damping in the deep shadow should be contrasted with the
nuch weaker damping found in the case of a cireular disc: the shadow of the
sphere 1s much darker than that of the dise (27, p. 463). Physically, the reason
for this result is that the intensity thrown into the shadow by diffraction at the
edge of the dise 1s much greater than that due to diffraction around a curved
surface, Classical diffraction theory, which predicts the same behavior for the
sphere and the dise, fails in this domain.

(v) In the lit region, sufficiently far from the shadow boundary
(8 — 6,>> 8 "), the WKB expansion for the wave function has heen confirmed
up to the second order. The expression (6.23) for the reflected wave is valid
both in the forward and in the backward half-space, although the derivation is
different in the two cases. In this region, we also find the continuation of the
surface waves, but they are masked by the much greater contribution from the
incident and reflected waves, except in the immediate vicinity of the shadow
boundary.

(vi) On the swrface of the sphere, Kirchhoff’s approximation (7.1)-(7.2) for
the normal derivative of the wave function is accurate, except within the penum-
bra region, {6 — (x/2)] < 87 (Fig. 14). The behavior in this region is de-
seribed by Trock’s function (7.11)-(7.13), which interpolates smoothly between
the values on the lit and on the shadow regions. However, it cannot be employed
too far beyond the penumbra. The penumbra or, equivalently, the corresponding
angular momentunt domain | X — 8| < 87, is responsible, in the sense of
Huygens' Principle, for the main corrections to classical diffraction theory,

(vii) The neighborhood of the shadow boundary, |6 — 6| << g7 at
distances 8% < 2 << 8"%a, is denoted as the Fresnel region in Ifig. 14. In this
region, the main term of the angular diffraction pattern corresponds to the
classical T'resnel pattern of a straight edge, with small corrections, representing
the effect of the curvature of the sphere (ef. (7.44)). One of these corrections
is the shift of the shadow boundary, denoted by s in Fig. 14. It is given by
(7.50), In agreement with a conjecture made by Rubinow and Keller (21).

The solution in this region is still not in agreement with the result given by
classical diffraction theory, which would be analogous to the Fresnel pattern of
a slit, rather than an edge. In fact, it would contain, in addition to (7.28), a
contribution from the diametrically opposite edge, corresponding to ¥§”, which
is actually replaced by a rapidly convergent residue series (cf. (7.21)).

(viii) In the Fresnel-Lommel region, 8 < 6, 8%a < v <« Ba (Fig. 14), the
main term of the wave funetion corresponds to Lommel’s classical solution (8.17)
for the diffraction of a plane wave by a circular disc. The main correction term
is given by the TFock-type function (8.14), which also gives rise to a smooth
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transition to the deep shadow and to the lit region. Along the axis, starting at a
distance z ~ 8%, we find the well-known Poisson spot, which actually corre-
sponds to a cone (Fig. 14) of angular opening ~B7 surrounded by diffraction
rings (cf. (8.43)).

(ix) In the Fraunhofer region, i 3> ga, the wave function is given by (9.1).
Tor 8% « 6 < m, the scattering amplitude is given by (9.54), the main term
of which corresponds to geometrical reflection. For § 37 the amplitude is
dominated by the forward diffraction peak (cf. (9.33)), which corresponds to
the classical result for a circular dise. In the transition domain 8 ~ 87, we have
to employ (9.42), which again may be continued smoothly up to the region of
geometrical reflection. Higher-order corrections may be obtained from the exact
representations (9.78) and (9.79), which result from applying the modified
Watson transformation directly to the scattering amplitude.

(x) Fock-type functions such as (7.13), (7.39), (8.14), (8.20), and (9.34)
play an important role in linking the domains of geometrical optics and classical
diffraction theory. In view of this role, which probably is not restricted to the
present example, but is of more general validity, it would be desirable to con-
struct tables and graphs of these functions. Only in a few cases is this material
presently available.

Possible applications and extensions of the present treatment include the
problem of a transparent sphere (square well potential in quantum mechanies),
which will be discussed in a subsequent paper.

APPENDIX A. ASYMPTOTIC BEHAVIOR OF THE CYLINDRICAL
FUNCTIONS

The asymptotic behavior of the cylindrical functions Zx(z), & > 0, in the
complex A plane may be derived from the formulae given by Watson (25, p.
262). The results are graphically presented in Fig. 15.% The notation is as follows:

Al ) = (2/m) (N — )T, (A1)
alnz) = (W — 27— Al [2— + (—)\2—:%2)1/—2], (A.2)

where the branch of (A — z)'* to be taken is specified by the condition

(2 — )N = |\ exp (ip) (—r <¢=m) for|A]— =. (A3)

Thus,
1/2 v A
A"(‘f_x) ’ ea_)@_f\) for |\|— oo. (Ad)

The asymptotic behavior of H(2), H §\2)(,v) changes (Stokes’ phenomenon)

¢ Similar figures appear in (33). However, they contain several mistakes.
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Fic. 15. Asymptotic behavior of the cylindrical functions Z,(x) in the index plane
(x > 0). The zeros of H(z) are asymptotically located on curves h; and h_; ; those of
H®(x), on hs and h_s ; those of Jy(x), on j and j'.

across certain branch lines, shown as thick lines in Fig. 15. For H{"” (z), we have
the curves by (Re o = 0, Im A > 0) and h_; (Re (a — 2w\) = 0, Im N < 0).
These curves are symmetrical with respect to the origin and the zeros of H il)(x)
are asymptotically located on them. The curve h; cuts the real axis at A =
at an angle of x/3. The tangent to this curve tends to the vertical direction for
X | — =. Asymptotically, the curve approaches A\ = o| A |, n — —7/2, where
o and n are defined by (2.26) and (2.27) with p replaced by x:

o= exp [7, (1r + e)], 7= eln |2\ ex|. (A5)

2

For H{® (), we have the branch lines by (Re @ = 0, Im A < 0) and h_» (Re (a
+ #rA) = 0, Im A > 0), which are complex conjugate to A and h_;, respec-
tively, and where the zeros of Hy ?(x) are asymptotically located In addition,
we have the portions of the real axis denoted in Fig. 15 by j (from — « to —Jc)
and j (from —x to 2), where the zeros of Jy(x) are located.

These curves divide the A plane into 5 regions, 4 to £ in Fig. 15, and the asymp-
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totic behavior of Hy" (x), H\¥ (r), Jy(x), and J_x(x) in these regions ix shown in

this figure. Note that
In(x) — (2mN) T ex ) (IN]—= ) (A6)

in all regions.

Tor each function, there is a domain where it tends to zero for [\ | — =,
whereas it tends to infinity outside of this domain. For Jy(x), this domain is
region A. For H{"(z), it is the domain between hy and the curve X = —o| \ |,
n — —3m/2 in the lower half-plane. For Hy”(x), it is the domain between hy
and the curve A = o] A |, 7 — 37/2 in the upper half-planc.” Finally, J_\(x) —0
in regions C and D.

These results have to be modified in the neighborhood of each of the branch
lines, where the two representations for the same function on different sides
become of comparable order of magnitude. We then must take for the function
the sum of the two representations. This is indicated by the shaded regions in
Fig. 15.

Thus, we have

HP (2) ~ 24 sinh <a - zli) in AB, (A7)
H(z) ~ —24 exp (—m — {) sinh (oz — im\ + z§> in DE, (AR)
HP(z) ~ —24 exp (m + z’zr) sinh (a — imh\ — z£> in BC,  (A9)

H®(z) ~ 24¢ ™" sinh <a + zi) in EA. (A.10)

What is the width of the shaded regions? In AB, for instance, we have
HP (z) ~ A(e* — ie™®),

while outside of AB one of the two terms dominates, so that exp (2| Re « |) > 1.

Thus, the boundary curves of AB, shown by broken lines in Fig. 15, can be de-
fined by

Re a = £C, (A.11)
where C is a constant such that
e > 1, (A.12)
ie., ¢e*° may be neglected within the required degree of approximation.

7Franz (5, p. 36) incorrectly states that E and B are the domains where HY (z) — 0,
H)S% (z) — 0, respectively.



HIGH-FREQUENCY SCATTERING 87
Asymptotically, with A = ¢/ X |, we find that (A.11) corresponds to

<§+n>l>\1 =+ C, (A.13)

where ¢ and 5 are given by (A.5). Thus, the angular width of the region AB is

Ae = 207 x| In (2{ N\ |/ex) (A.14)

and the corresponding arc length |\ [Ae tends to zero like (In [ ). Similar
results are valid for the other shaded regions.

It must be noted that, due to our choice of the phase in (A.3), A goes over
into —. and the phase of « changes by 2ir\ on crossing the line j', o that, in
spite of appearances 1o the contrary, the representations for H(2), HP (2)
and J_x(x) given in Fig. 15 are continuous across j , while that for Jy(x) changes.
In particular, on 5 itself, with A = —g, we find

Jou(e) = Alp, O){sin (rp) exp [—alpy, 2)]

(A.15)
+ 1% cos (wu) exp [a(p, 2)}} (p > ),

where A and « are given by (A.1) and (A.2). Thus, Jy(x) has infinitely many
zeros on j , located asymptotically very close to the negative integers.

The asymptotic expansions given in Fig. 15 should be employed for | A | >> x.
Yor smaller values of | A |, additional regions have to be considered (25). We
shall require only a few additional results.

In region BE, in the neighborhood of the real axis, we may emiploy the Debye
asymptotic expansions

H;\I.‘l)(x-) - (2/_”)1/2(1‘2 _ )\2>~1/4

vexp{:t i[(xz — A — Neos™ A Ejl} (A.16)
r 4
i 5 X
1F 1 e _ e .
A st (S )+
where the upper signs refer to Hil)(x) and the lower ones to Hi”(xr), and
=N > 0,0 < cos T (Nx) < m/2for —z <\ < .

These expansions fail in the neighborhood of X = 4z. If [X\ — x| becomes
comparable with | A |'?, we must employ the expansions (84, pp. 367, 446)

HP(z) = 2exp (Fir/3)(2/0) P Adlexp (£2in/3)(2/N) (0 — &)1 + 0D,
(A.17)
Ia(x) = (2/0)74E2MNTO = )] + 0T, (A.18)

where Ai(z) denotes the Airy function, defined in Appendix D.
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Re A

APPENDIX B. ASYMPTOTIC BEHAVIOR OF g(, 8, o)
In order to prove (4.2), we note first that, according to (2.9) and (2.15),
g(_—'x) 6: P) = g()\, ﬂ; p)) (B]-)

so that it suffices to study the asymptotic behavior in the upper half-plane. For
this purpose, we shall subdivide it into two overlapping regions, as shown in

Fig. 16.
In region 1, we may rewrite g(X, 8, p) as

g\, 8, p) = 2ANLBYH (p) — HP(B)Ia(p)]. (B.2)

Substituting J» and H{? by their asymptotic expansions, valid in regions A4,
AB and B of Fig. 15, we find

g\, B, p) = AA(N, B)A(N, p){exp [a(X, B) — a(X, p)]
—exp [—a(), 8) + a(), o)}
In region 2, g(X, 8, p) may be rewritten as
g\, B, p) = 2™ HL (B)T A(p) — JA(B)HL" (p)]. (B.4)

Substituting H" and J_, by their asymptotic expansions, valid in regions C,
BC, and B of Fig. 15, we are led again to the same result (B.3). Taking into
account (A.4), this yields

o0, 8,0) 2 |:(§>x - (g)x] (B.5)

for |\ | — o« in the whole upper half-plane. It then follows from (B.1) that

(B.3)
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the same result 1s valid in the lower half-plane. This proves the validity of (4.2)
in the whole X plane.

APPENDIX C. ASYMPTOTIC BEHAVIOR OF THE LEGENDRE
FUNCTIONS

The functions Q5" (cos 8) and Q' (cos ) employed in the present work are
defined by

Q51,2) (cos #) = %[P,, {cos §) + %TEQ,, (cos 0):' , (C.1)

where P, and @, are Legendre functions of the first and second kind, respec-
tively. We have the following relations (35):

P,(cos 8) = Q" (cos 8) + Q% (cos 6), (C.2)
QP 2(—cos 8) = ie QP a(cos 6), (C.3)
QB0 —cos §) = —ie™ Q" n(cos 6), (C4)
Proipp(—cos 8) = e Py _ypa(cos 8) — 2i cos (aN)Q3 1 s(cos 8), (C.5)
Prp(—cos 8) = —ie"™Py_y;n(cos 8) + 2 cos (aN)Q3P12(cos 6). (C.6)

Both Qs and Q{2 have poles at the negative half-integers, which are can-
celled in Py_y)s .

Ife0=La—¢ N1 |X|e>1, the following asymptotic expansions
are valid (35, pp. 237, 240):

exp [Fi(M — 7/4)] 1+ 7 cot 0
(27 sin §)V2

Qs (cos 6) = + o\~ >] (Cn)

9 1/2
e 6) = (-2
Praiz (cos 0) (w)\ sin 6)

: [cos (xo - 4) + —S—t)\—e sin (w - g) + 0()(2)],

If0 =6 =¢|Ne< 1, [N 1, wemay employ the expansion (35, p. 243)
Jl(u):l

+0 (sin“ _g.)

w =2\ sing. (C.10)

(C8)

Pi—js (cos 8) = Jo(u) + sin’ ~[ Js(u) — Jou) +
(C9)

where
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A uniform asymptotic expansion of the Legendre function® has been given by
Szegd (36):

) 0 1/2
P2 {cos B) = (———)

sin 6
(C11)
J1(2\0)

Ad

. [Jo()\ﬂ) + é (8 cot 6 — 1) + 0()\_2)].

This reduces to (C.8) when | A [# >> 1 and remains valid for § — 0.
In Section IX we made use of the inequality
| Poyapp(cos 8) | < (cos 0) P exp (mp/2) (1 20,0 6 <7/2). (C.12)

To prove this inequality, we start from the integral representation (25, p. 387)

P, (cos ) = f(%l—if exp (—t cos 8)Jo(t sin 8)¢ dt
Vv 0
0<80<7/2,Re (v +1)>0),

(C.13)

where T'(z) is the Gamma function. It follows that

[ Piy—1pz (cos 0) | exp (—1 cos )t 2 dt

1 @
I T + 13| j(:
_ e T8 [cosh (w)]m ™' m
= (s ) G T 18] T L eos 6 =\ =0<3)
which proves (C.12).

APPENDIX D. THE AIRY FUNCTION
The Airy function is defined by

1/3 pw

4i() = 2 [ cos (¢ + 3%t) at (D)
It can also be expressed in terms of Bessel functions of order 13 (34, p. 446).
We have
WIAi(z), Ai(2e™""?)] = 7% /2x, (D.2)
where W denotes the Wronskian. Also,
Ai(z) + €742 + e P 4i(ze ) = 0. (D.3)
The asymptotic expansion of A¢(z) for large |z | is given by (34, p. 448)

8 Cf. also (87). However, there are several mistakes in the expansion given in this refer-
ence.



HIGH-FREQUENCY SCATTERING 91

e

A1(z) QW

14 0] (largz| < 7), (D4)

Ai(—2) ~ 7 {sin (g‘ + Z—) 4+ 0™ — cos <g° + E) O((‘l)} (D5)
5

(larg z| < 2x/3).
where
¢ = 25" (D)

The zeros of the Airy function are all located on the negative real axis. If
—ur, denotes the nth zero, we have, for large n (34, p. 450),

Tn = [3: (n - 1>]2/3 H+0x™)]  (>»1), (DI)

2 4

1/6
A (=2 & (=) [1)” <n - %)} (n>»>1). (D8)

The first five values of x, and the corresponding values of 4:'(—z,) are listed
in Table I (34, p. 478).

APPENDIX E. THE LOMMEL FUNCTIONS
Lommel’s functions of two variables (25, pp. 537-530) are defined by

2 @0 2m—y+2
V.{u,v) = cos (%L + ,i + E) + 2 (=) (z—t> Jom—ra(v).  (E.)
2 2u 2 m—0 v

In particular,
Volu, u) = 25{Jo(u) + cos ul, Vi(u, u) = —14 sin u, (E.2)
Vo(uy 0) = 1) Ilyl(u7 0) = O' (Eg)

The following integral representation is valid:

y—1 ©
V.(u,v) + aV,—(u,v) = —1%[ Ji () exp liu(l — ) /21 dt
- J1
(u>0,v>0,Rer > 1g).

(E4)
In particular,
flw Jo(ot) exp (suf?/2)t dt = (3/u) exp (1u/2)[Vo(u, v) + eVilu,»)]. (E.S5)
For large | u | and fixed » and », we may employ the asymptotic expansion

]

Vi, 0) & 2 (=1)"(w/u) ™" T yam(0). (E.6)

m=0
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TABLE I
Tue First FIVE ZEROS oF Ai(—r)
n Xn A (—xp)
1 2.33811 +0.70121
2 4.08795 —0.80311
3 5.52056 +0.86520
4 6.78671 —0.91085
5 7.94413 +0.94734

APPENDIX F. EVALUATION OF f.(k, = — ¢)

To evaluate the first integral in (9.51), we may employ the expansion
tan (razx) = i + 262, (—1)" exp (2inwaz), (F.1)
n=1
which gives

0

fo exp (—2°)Jo(wz) tan (raz)z dx = zf exp (—2")Jo(w)z dx
0 0

(12)
+ 275; (=1)" fom exp (—z' + 2nrer)olws)x di.
According to Weber’s integral formula (25, p. 393),
/:, exp (—2°)Jo(wr)z dz = 15 exp (—w’/4). (I'.3)
On the other hand, by partial integration,
fom exp (—2° + 2inwax)Jo(wz)z de = _(Z—n];rW +0(87%), (F4)

so that, finally,
o . 9 .
-£ exp (~2")Jo(wz) tan (rex)z dz = %exp (Tw> + ﬁza—z + 08, (K5)
where we have employed the well-known formula
_ 1 )n+l 2

> o™

n=] n? 1

|3

(F.6)

Do

It is clear from the above calculation that, since we are neglecting terms of the
order of 87%, we may replace tan (wax) by 7 in all remaining integrals of (9.51).
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To compute these integrals, we employ Hankel’s formula (25, p. 393):
f exp (—a")Ja(wz)z™ " dz
0

_ I((m +n)/2) <w>"

Ay
T Tarn 1) \2 eXp<4)q)< 5 T ’"+1’Z>’

where ®{a, b, z) is Kummer’s confluent hypergeometric function.
Substituting the above results in (9.51), we get

b &) = i —ey, 1
Sk = = =3 {(1 +4ﬁ> [e"p ( 3 >+ 120;}
7 — o 1 .5 — .
+ @exp <T)<I><—2,1,I) +1s1n 3exp (T) (F.8)
4 2 ¢O2 2 L,
[30 (14 ) 5 <13_>+4>(,~, >:|+O(ﬁ )}.

It follows from the definition of ®(a, b, 2z) that

2 2 4
) w W .
@(—2,1,Z>=1~§+~3—2. (F.9)
On the other hand, we have (38)
®(1,n + 1, 2) = ne’z "y(n, z), (F.10)
where v(n, 2) is the incomplete gamma function, and
n—1l m
y(n,2) = (n — 1)1 <1 — e Z%), (F.11)
m=0 M.
so that
1 n—l m
®(l,n+1,2) = & (5 - Zi>. (F.12)
2" m=0 1!

Substituting (F.9) and (I.12) in (F.8) and taking into account (9.52), we
finally get

. wZ —2
felk,m — €) = —= exp (—21,8 - Z)[ + _ﬂ @3— + 0(B ):I. (F.13)
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