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The scattering of a scalar plane wave by a totally reflecting sphere (hard- 
core potential) at high frequencies is treated by a modified Watson transforma- 
ticm. The behavior of the solution both in the near and far regions of space is 
discussed, as well as the accuracy and domain of applicability of the WKB ap- 
proximation and classical diffraction theory. It is shown that different trans- 
formations are required in the forward and backward half-spaces, and corre- 
sponding integral representations for the primary wave are derived. The 
transform&ions are rigorously proved and the convergence of the residue 
series is discussed. In the shadow region, the physical interpretation of the 
complex angular momentum poles in terms of surface waves is in agreement 
with Keller’s geometrical theory of diffraction. In the lit region, sllfficientl>- 
far from the shadow boundary, the WKB expansion for the wave function is 
confirmed up to the second order. On the surface of the sphere, KirchhofYs ap- 
proximation is accurate, except in the penumbra region, where the behavior 
is described by Fock’s function. The diffraction effects in the neighborhood 
of the shadow boundary are investigated and the corrections to classical dif- 
fraction theory are obtained. The shift of the shadow boundary is evaluated. 
The expression for the wave function in the Fresnel-Lommel region is derived 
alld applied to the discussion of the Poisson spot and the behavior near the 
axis. The total scattering amplitude is evaluated for all angles, including the 
rlleighborhood of the forward and backward directions. The corrections to the 
forward diffraction peak and the transition to the region of geometrical re- 
flection are discussed. The modified Watson transformation is also applied 
directly to the scatt.ering amplitude. The connection between representations 
vslid in different regions is established. 

I. INTRODUCTION 

The problem to be considered is the scattering of a scalar plane wave by a 
totally reflecting sphere at high frequencies. This means not only that lx >> 1, 
but also that (ka)1/3 >> 1, where k is the wave number and a is the radius of the 
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sphere. It will be attempted to make the treatment both rigorous and comprc- 
hensive, including a discussion of the near and far regions and a comparison of 
the results wibh the WBB approximation and classical diffraction theory. 

The wave function can be interpreted either as the velocity potential of sound 
waves, corresponding to an acoustically soft sphere, or as the Schradinger wave 
function in nonrelativistic quantum mechanics, in which case it corresponds to 
a hard-core potential. In both cases, t,he boundary condition is the vanishing of 
the wave function on the surface of t,he sphere. There is no difficulty in extending 
the treatment to a vector wave field, so as to represent electromagnetic scattering 
from a perfectly conducting sphere. 

This is perhaps the simplest problem involving a finite size scatterer, and its 
exact solution in the form of a partial-wave series has been known for a long 
time. It is also well known that this form of the solution becomes useless at high 
frequencies, because of the large number of terms one would have to keep in 
order to get a good approximation. 

The way out of this difficulty was proposed by Watson (I), who transformed 
the partial-wave series into a “residue series,” which is rapidly convergent at 
high frequencies. Several applications of this transformation to the theory of 
radio wave propagation around the Earth were made by Van der Pol and Brem- 
mer (2). 

Watson’s procedure applies only to the shadow region behind the sphere, and 
not to the lit region. An extension of the treatment to the lit region was made 
by Fock (3) and later reformulated by Franz (4, 5). 

As will be shown in Section VI, this treatment is also incomplete, for it does 
not apply to the backward half-space. A certain amount of confusion seems to 
exist in the literature concerning the application of Watson’s transformation in 
the lit region. 

Recently, interest in Watson’s transformation has been renewed, in connection 
with Regge’s work on complex angular momentum in potential scattering and 
its applications to elementary-particle physics (6’). 

In view of t.his, as well as of its intrinsic interest, a reexamination of the 
totaIly reflecting sphere problem seems warranted. Since this is the simplest 
problem of its kind, it should also serve as a model for the extension t,o more 
complicated situations, such as different refractive indices and different shapes. 
The case of a transparent sphere, which has numerous applications to optics 
and nuclear physics, will be treated in a subsequent paper. 

In the present work, Watson’s transformation will be reformulated in such a 
way that it becomes applicable both in the forward and in the backward half- 
space, and in particular in the neighborhood of the forward and backward 
directions. For this purpose, new integral representations of the primary wave 
will be derived in Section II. 
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A rig;orous proof of Watson’s transformation and the convergence of the 
residue series will be given in Sections III and IV. The physical interpretation 
of the result’s in the shadow region will be discussed in Section V. In Section VI, 
the nearby lit region, excluding the neighborhood of the shadow boundary, will 
be considered. It will be shown that the solution in this region agrees with the 
WKB approximation up to the second order. 

The diffraction effects arising in the transition between lit and shadow regions 
will be examined in Section VII, where the results derived from t.he exact solu- 
tion will be compared with classical diffraction theory. The shift of t.he shadow 
boundary will also be investigated. 

At greater distances from the sphere, but still in the near region, the wave 
function resembles the classical solution to the problem of diffraction by a 
circular disc, as will be shown in Section VIII. The well-known Poisson spot 
effect, as well as the behavior near the axis, will also be studied. Finally, in 
Se&on IX, expressions for the scattering amplitude in all directions will be 
derived. 

The main results and conclusions derived from the present treatment will 
be summarized in Section X. Some of them are not new, but have been included 
here for completeness. The basic mathematical tools employed will be presented 
in Apl)endices A to F. 

II. WATSON’S TRANSFOlIMATION 

A. THE TOTAL WAVE FUNCTION 

Let the incident plane wave be given by 

+i(r, 0) = exp (2% cos 0) = l$ (21 + l)i;‘l(k~)P~(cos .O), (2.1) 

where j, is the spherical Bessel function of order 1 and PI (cos 0) is the Ith Legen- 
dre polynomial. 

The solution of our problem is given by the well-known partial-wave expan- 
sion 

$(,f”, 0) = ; lg (2Z + 1)&l”‘(P) + SdP)P(P)lPl(cos e), (2.2) 

where Ilhe S-function Si(p) is determined by the boundary condition #(a, O) = 0: 

S,(P) = -hi”‘(P)lP(P), (2.3) 

and we have introduced t’he nomtions 

p = h, p = ka. (2.4) 

It is well known that, at high frequencies one can associate wit’h the Zth par- 
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pz = (I + ?,i)!k (2.5) 

and all partial waves with pl 5 a are strongly affected by the scat,terer. Thus, 
the number of terms one has to keep in the partial-wave expansion is of t,he 
order of ,B >> 1, so t.hat (2.2) becomes useless at high frequencies. 

Watson’s transformation is based upon the following formula: 

(2.6) 

where C is the contour shown in Fig. 1. This formula can easily be checked by 
taking the residues of the int,egrand at the physical (half-integral) values of X. 

Clearly, t,here is a large degree of arbitrariness in (2.6). For instance, the fac- 
tor (cos ?rX)-’ might have been replaced by any analytic function having poles 
wit,h the same residues as this factor at the physical point’s. The only restrictions 
to which the “interpolating” function f(A) is subject are that it must reproduce 
f(Z + $$) at the physical point.s and that it must be regular in a neighborhood 
of the real axis, so that the int,egral can be comput,ed by residues in the indi- 
cat#ed manner. There is usually a wide class of functions satisfying these condi- 
tions. 

The choice of f(x) is dictated in pract#ice by the requirement of appropriate 
behavior at infinit#y in the X plane, since the next strep in Watson’s t,ransforma- 
tion will consist in the deformation of contour C away from the real axis. In 
Field Theory, this leads to a unique continuation, w&h the help of Carlson’s 
theorem (6). 

This result does not apply in the present case. However, only two alternative 

FIG. 1. Paths of integration in the X plane. 
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choices of f(K) will be required. The first one leads to 

27 

(2.7) 

where 

m, P, P> = i Yc 2 (?p>‘;? eP4 [H:?)(p) - $# HI\“(p)] 

1 T 

0 

1’2 
(2.8) 

e 
--is:4 gb, P, P> 

=2 & fG”(P) ’ 

wit,h 

g(& P, P) = W(PW:“‘(P) - fP(O)W(P). (2.9) 

In this expression, Px-l,t is Legendre’s function of the first kind and we have en- 
ployed the relat’ion hi(~) = (a/2.r))“‘H 1+1,2(z) bet,ween spherical and cylin- 
drical functions. 

The other choice is based on t,he relaCon 

P,( -cos e> = (-l)Yl(cos e>, 

which holds for integral 2, and leads to 

(2.10) 

#(r, L9) = -i s cf(A, P, P)P~-~,~( --OS e)eix"'" X . 
cos *A 

(2.11) 

R. POISSON'S STJM FORMULA 

We shall now consider an alternative transformation,l based on Poisson’s 
sum formula (7), which, for our purposes, may be written as follows: 

(2.12) 

Applying this to (2.2), we get 

d4fi 0) = 2 jYZm C-1)” ~Yfih P, p)~x-l,2b~ 0) 

exp [i,, (,,L + i)] X &.(2’13) 

Substituting X by --X in the integrals for r)z = - 1 to - 00 and making use 

1 This transformation seems to have been first employed by Bremmer (2, p. 310). It was 
subsequently adopted by several authors. 
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of the properties 

P-x-l,2(~~~ ej = Px-l,2(~~~ e), 

HI’,’ (JUT) = eirxlp (x), H??(x) = e -ilXH:“‘(.c), 

(2.14) 

(2.15) 

we find that, (2.13) can be rcwrit’ten as 

0, 0) = g h(l’, 01, (2.16) 

where 

&Jr, e> = 2( -1)” 
s -If(b P, p)&1~2(cos 0) exp [i*X (2~. + >s>] x rlX. (2.17) 

This result’ is equivalent to (2.7). In fact, according to (2.13) and (2.15), 
t,he integrand of (2.7) is an odd function of X, so that the lower half of cont,our C 
may be replaced by its reflection about the origin, shown in broken line in Fig. 1. 
Accordingly, contour C is equivalent to the st’raight line D located above the 
real axis. On D, t,he following expansion is valid: 

e --ix*/2 
~ = 
cos aX 

aei”r’” go ( - 1) me-A* (2.18) 

Substituting this result in (2.7), we are led to (2.16). It will be seen later that 
(2.16) is a more convenient form for several purposes. 

C. THE INCIDENT WAVE 

We shall now apply Watson’s transformation to the incident wave (2.1). The 
resulting expressions will play an important, role later on. 

A derivation similar to t,hat of (2.7) and (2.11) leads to the representations 

eipcose = (s-” eP4 S, JA(p)Gl(X, 0) dX, 

eipeose = (g>,” eMiTi S, JA(p)Gt(X, 0) CZX, (2.20) 

where 

G1(k, e) = Xe-ix”‘2Px-1,2(cos e)/cos TX, (2.21) 

G2(X, e) = -iiXe ix~~2Px~l,2( --OS ~)/COS TX. (2.22) 

The next step is to deform contour C into a contour that is symmetrical about 
the origin. For this purpose, we must find the asymptotic behavior of the inte- 
grand at infinity in the X-plane. 

The asymptotic behavior of t,he cylindrical and Legendre functions is discussed 
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in Appendices A and C, respectively. According to (A.G), 

JX(~) w (&y” &y (IX I -+ w) (2.23) 

and, according to (C.S), 

Gl(x, e) M (2x/~ sin ~9)“” exp [ix&-e)+ii] (IX/+win~+), 

cz (2h.l~ sin c?)“~ exp[-ih(+ - 6) -i:] 
(2.24) 

(I X / + 02 in I-), 

G&i, 0) = (2x/r sin 19)“~ exp[ih(;+B) -iSI (1X1-t w inI+), (225) 

M -(2X/r sin 6)“” exP[i+e)+ii] (lX/-+a:inI-), ’ 

where I+ and I- denote the upper and the lower half of the X-plane, respectively. 
It follows from these results that contour C may be freely deformed in the 

right half-plaue, except possibly along directions approaching that of the imagi- 
nary axis. To st,udy the behavior along such directions, let us inkoduce the nota- 
tions 

u = i exp (ie) = exp 2 [.(;+ E)]T (2.26) 

7 = E In 1 2X/ep / (2.27) 

and let us consider the behavior of the integrand when h -+ fum and simul- 
taneously E + 0 in such a way that, 71 approaches a const’ant value. 

The curves X = ~1 X 1, T ---f -r/2 aud h = -LJ/ x (, VJ + a/2 for large 1 X I 
are shown in broken lines in Fig. 2 and Fig. 3. According to Appendix A, the 
fur&on Jx(p) approaches zero t#o t,he right of these curves, and so do the inte- 
grands of (2.19) and (2.20), so that it suffices to consider their behavior to the 
left of the curves. In this region, (2.23) to (2.25) imply 

i (sin @1’2 j Jx(p)G1(X, 6) ( hi exp [I X I(7 + @I for X -+ u CQ, 
(2.28) 

zexp[- 1 X 1 (t-e++)]forX---m 00, 

and 

i (sin 0)“” I Jx(p)G&, e)l 2 exp [I X ~(TJ - e)] for X + u 00, 
(2.29) 

,%exp[- IXj(~+e-7r)]forX-+--croo. 
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-ReX 

FIG. 2. The path of integration in (2.19) must begin and end at infinity to the right of 
the shaded regions. A possible path that is symmetrical about the origin is shown (8 < r/2). 

FIG. 3. The path of integration in (2.20) must begin and end at infinity to the right of 
the shaded regions. A possible path that is symmetrical abont the origin is show] (6 > r/2). 
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It folllows from these result,s that the path of integration in (2.19) may be 
deformed at will, provided that it st’ays asymptotically to t’he right of the shaded 
regions in Fig. 2. A symmetric path of integration can be found, as shown in 
Fig. 2, provided that the corresponding 1 satisfies 

B-?r<<<-0, (2.30) 

which is; only possible for 8 < 7r/2. 
Similarly, as shown in Fig. 3, a symmetric path of integration can be found in 

(2.20), provided t’hat the corresponding 7 satisfies 

7r--e<q<o, 

which is only possible for 8 > r/J. 

(2.31) 

We shall therefore take (2.19) with the path of Fig. 2 for 0 < 7r/2, and (2.20) 
with the path of Fig. 3 for 0 > r/ 2. Making the substitution X -+ --X in t’he 
integral:r; from ---cm to 0 and employing (2.14) as well as the idenhities 

Jh(p) - eiTXLx(p) = -iei”” sin 7rM:‘)(~), (2.32) 

Jx( p) - emi”‘J-k( p) = ie?“’ sin .IrXH?’ (p) , (2.33) 

we finally get t#he integral representations’ 

.e<;, 
( > 

eipcose = (G)“’ P4 lum H:2)(p)PAvli2( --0s 0) Pi2 tar1 (TA)x dh 

- e>; ) ( > 

(2.34) 

(2.35) 

the corresponding paths of integrat’ion being t,hose shown in Fig. 2 and in Fig. 3, 
respectively. 

m. THE POLES 0~ THE S-FUNCTION 

In order to deform the path of integration in (2.7) and (2.11) away from t.he 
real axi;j, we need information about t’he singularities of the integrand in t#he 
X-plane. The integrand is a meromorphic fun&ion of X, and its poles are the poles 
of the $:-fun&on 

S(X, P) = --H~‘(P)IH:“(P), (3.1) 

2An integral representation related to (2.34), but involving trigonometric instead of 
Legendre functions, was given by Franz and Galle (8). 
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which are the roots An(@) of the equat,ion 

Hf’(pj = 0. (3.2) 

They might be called the ltegge poles for the hard sphere problem, although 
t,hey do not show the t,ypical Itegge behavior characterist)ic of Yukawa-type 
potentials. 

The roots of (3.2) have been discussed by several authors (.%‘, 4, 9, 10). 
We are only interested in their behavior for large values of p. 

It follows from (2.15) that the roots are symmetrically diskibuted with re- 
spect to the origin, so t.hat it, suffices to consider them in t,he right’ half-plane. 
111 this region, t,here exists an infinite number of roots, all located in t’he first 
quadrant, close to the curve /Lo defined by (cf. Appendix A) : 

Re [(X” - p2)1’2 - X cash-’ (X//3)] = 0. (3.3 j 

This curve is shown in broken line in Fig. 4. It’ cuts the real X axis at X = ,B, at 
an angle of r/3, and tends to become parallel to t’he imaginary axis as ( X j + m . 
All the roots are simple (9). 

The roots of greatest physical importance are those closest t’o the real axis, 
which are located in the neighborhood of X = 0. In this region, we can use the 
expansion (A.17) : 

fp[X - d’3@/2y3] = 2e-i”‘3(2/X)“3Ai( -2) + O(P). (3.4) 

Since the zeros of the Airy function are all located on the negative real axis, 
we get (4) 

h,(P) = p + (p/2)1’32neiT’3 + O(p-““), (3.5) 

ImX 

FIG. 4. X X X-Poles of the S-function, located on curve h, The contour C, passes 
half-way between consecutive poles. 



HIGH-FREQUENCY SCATTERIKG 33 

Acre --x,~ is the ?lth zero of the Airy function. ,4 table of the first five zeros is 
given in Appendix D. According to (D.7), we have, for large 12, 

h,(S) 4 p + >g&(n, - ~.;)]yNpj’~ (n >> 1). (3.6) 

Let us fiually consider the asymptot,ic behavior of the roots for 1 X 1 --) 0~. 
In this region, the behavior of Hk (I) in t.he neighborhood of hL is given by (-4.7) : 

H:“(8) ;> z(~/~)l/“(~” _ p2)-1’4eis’4 si& (A” - $)l” 
[ 

-A Ill 
x + (x” - /w’” 

B 

so that the roots are given by 

Let 

L = h=p [((i-h)], p,>>p2. 

Then, (3.8) gives 

where 

This equation may be solved by it,erat’ion. We find 

1 
(3.7) 

i?! 
4 ’ 

1 
i 7r. ) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Pn = (n- ~)T(hl[~~‘“e; q)‘[l + 0 (k&y, (3.12) 

so that (10) 

Thus, both Re A, and Ini X, approach infinit#y wit,h 12, but Re A, does so more 
slowly by an inverse logarithmic factor. Note also that X,, - L-1 = O[(ln n)-‘I, 
so that the roots cluster closer together as n + m. 

The residues of the S-function at, its poles will also be required. According to 
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(3.11, 

I.n(p) = residue X(X, P)jh=X, = -H::‘(P) /$ H:i)(B)l\_h.~ . (3.11) 

In the neighborhood of X = /3 we have, by (A.17), 

fp[X - ~p(~py] = 2ei"'3(2/X)"3Ai(-~:e"i"'3) + o(p). 

It follows from (3.14), (3.15), (3.4), and (D.2) that, 

(3.15) 

I/3 

(3.N) 

at the poles (3.5). Asymptotically, for n >> 1, we may employ (D.8), which 
leads to 

is/e l/3 f-, M We- p [3r(n - J,d)]- l/3 (,rL >> 1). (3.17) 

Finally, let us consider the residues at the poles (3.13). In this region, H{” 
is given by (cf. Appendix A) 

‘) 112 
H:2’(/3) .Y i ” 

0 
(x” _ p*)k4 

‘IT 

i [ 

? 112 
_ p2)1/2 + Xln A + (A;- P 1 11 

(3.18) 

. exp - (A’ 

so that, according to (3.8), 

Hi’) (PI 2 (-1) 
neid4(2/#o(~; _ p2)--1/4. 

Similarly, according to (3.7) and (3.8), 

(3.19) 

It follows from these result,s that 

27r(n - M> -L 
eB I) 

(3.21) 
. exp - 

X)/eP] (I L I l+ P’>, 

so that r,, + 0 like (ln n)-’ for n + CQ. 

IV. THE RESIDUE SERIES 

Let us consider t,he integral that, appears in (2.17). We already know t.hat, the 
integrand has an infinite number of simple poles in the upper half-plane. Let 
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us now iucluire under what conditions the integral is reducible to a series of resi- 
dues lakal at these poles. For this purpose, we must find a sequence of pat,hs 
c’, passing between t,he poles arid such that, 

linl 
s f(h P, P)~X-II~(~OS 0) exp (i~X(2i~ + I;)] X (lx = 0. (4.1) 

I1-= c, 

Let us consider the behavior of the integraud as j X 1 --f ~1 in I+ . It is shown 
iu .Appendix B t,hat, 

(4.2) 

where g is given by (2.9). 
According t’o Appendix A, the behavior of Hi”(P) differs on the right and left, 

of the curve h, (cf. (3.3)) where the poles are located. In regions 2 aud 3 of 
I’ig. 4, we have 

whereas, in region 1, 

(4.3) 

In the neighborhood of h, , according to (A.7), we must, take the sum of both 
estimates : 

(4.5) 

Let. us exclude, for t,he moment, the directions B = 0 and 0 = P. Then, 
according to ((2.8)) 

Ph--li2(~~~ 6) cz (%A sin 0)-l” exp (--ix8 + k/4) (( X / + 00 in I,). (4.6) 

It follsows from these results that, for / X 1 + m, the int,egraud of (4.1) be- 
haves 1ik.e 

exp[Xln ($) + iX(; - f3) + %mrh]iuregion3, (4.7) 

ev[ (4.8) 

,,,,[- X In - + 2X a - fJ + 22mrX in region 1, C;) f ) 1’ (4.9) 
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except in t.he neighborhood of curve h, , where it behaves like 

K(x) = exp [A hi (~/a) + iX { (7r/2) - 191 + 2ij~aX] 
P yinh [X ln(2X/e/3) + i ?r/4] ’ 

(4.10) 

It is readily seen that (4.7) approaches zero at’ least exponentially for all t?, 
0 < 6’ < T; the same is true for (4.8) and (4.9) if UL 1 1. However, for ‘~1 = 0, 
(4.8) and (4.9) go t.o zero everywhere if and only if B < ?r/2. 

Finally, near h, , we have to avoid the poles, which are the zeros of the de- 
nominator of (-4.10) (cf. (3.8)). I par this purpose, we shall choose C, as a half- 
circle of radius R, passing half-way bekeen consecutive poles, so that, for large 
n, we have, according t’o (X11), 

R, ln ++L*+;. 

Then, in the neighborhood of h, , 

x = R, exp[iG - c)] (4.12) 

(4.11) 

and, since 

1 sinh (a + ib) / = (sinh’a CO& + cosh’a sin%)“’ 2 cash a] sin b /, (4.13) 

it, follows from (4.10) that 

, K(x), ~ exp [-R,I%m + (~/‘2) - 0 - 6 In (r/a>11 
cosh( Rn[t ln(2RJep) - (r/Z)1 1 (4.14) 

5 exp [ - R,[2ma + (r/2) - 0 - E In (~/a)]]. 

Since c + 0 along h, and its neighborhood,3 we see that K(X) approaches zero 
exponent.ially for 0 < e < Z, m 2 1 and for 0 < 8 < 7r/2 if m = 0. 

Since Pi-&l) = 1, it is readily verified that all the above results remain 
true if 0 = 0. However, near 0 = ?r, we can no longer employ (2.17), since 
Pk-liZ(cos 0) has a logarithmic singularity at this point. 

In conclusion, we see that (4.1) is valid for all m 2 1, 0 5 e < ?r, but it, is 
only valid for 0 5 e < a/2 if )n = 0. It then follows from (2.17) that 

0 

l/2 

lc/m(~, e) = (-1)” 27rei”‘4 $ 
dP 

(4.15) 

.fl x, rn exp [h-L(a)75 + Ml H~~‘(p)Ph,-ld~~~ e) 
n=1 

3 For a discussion of the width of this neighborhood, see Appendix A. 
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provided that 

m = 0, ose<$ or ,m~l, ose<iT, (4.16) 

where X,(/3) are the poles of S(,X, 0) arid P,(P) is defiued by (3.14). 
Oue cau verify direct,ly, with the help of (3.13) aud (X21), t,hat, for ‘IL + QI, 

the nth-order t’erm of (4.15 ) behaves, in absolute value, like 

n7r a 
esp - - 

i [ 

7r ln(l/a) 
2 lu(%m/e8) 2’wT + 2 - I3 - 2 ln(2TLa/@) Ii ’ 

so t,hat, t.he conditions for t.he couvergeuce of t.he residue series are exactly those 
stated in (4.16). 

A rigorous discussion of Watsou’s trausformat’ion aud the couvergence of 
the residue series in the shadow region was apparently first’ giver1 by Pfluuuu 

(11). 

\‘. THE SHADOW REGION 

We shall begin the discussiou of the solution wit,h the simplest case, uamely, 
the behavior in t,he shadow region. 

According to geometrical optics, the shadow regiou is t’he whole cylinder 

0 2 0 < 0” 5 lrp, (5.1) 

O,, = sin?(a/r) (5.2) 

is t,he shadow bouudary angle. Actually, as will be seen later, the shadow of the 
sphere does notI extend beyoud distances +a, and t-he trausition to the illumi- 
nat.ed rcgiou already starts at much smaller distances, of the order of @“a. 

Siuce 0 < a/2 in the shadow region, (-l.13) is valid for all IS 2 0, so that 
(2.16) becomes 

(5.3) 

= Ire 
i*14 

0 

li? 

$ g A, I’,, 
exp ( -iisX,/2) 

cos iA, 
H:~)(P)PX,-dCOS 01, 

where xve have employed ( 2.18 ). The last form of t’his result could also have 
beeu obt ained directly from (2.7). 

Eyualiori (5.3) is forntally similar to an “eigenfunction” expansion in terms 
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of the fuuc~tious H:,t’( p), which satisfy the boundary corldit.ioll on the surface 
of the sphere (cf. (3.2)) and the radiat,iou condition at infinity. The latter 
implies a nouself-adjoint prohlc~u, explaining why the “eige~mducs” are ~o~nples. 
It was remarked by Souuuerfeld ( 1,“) that the “eigenfunctions” are tveu ort hog- 
onal in a certain seuse, and he proposed to derive (5.3) 011 this basis, However, 
as was showrl by Pfluuun ( 11)) t,he set of “eigenfunctious” is by 110 meaus coul- 
plete, and no general charact.erizat.ion of the class of funct,ions for which the 
expansion is applicable has so far beer1 given. 

In practice, even though (5.3) converges for all 8 < r/3, its usefulness is 
restricted to the domain where its terms are rapidly decreasing from the begin- 
niug, so t,hat 0111~ t’he first few term have to be considered. This happens only 
wit.hin t.he shadow region, as will 110~ be seen. 

Let us consider the first few terms of (5.3)) corresponding to poles of the type 
(X5), located near X = 0. We shall restrict ourselves to points withiu the 
shadow region, riot too close to the surface of the sphere, so that 

I’ - a >> pp”‘3w. (5.1) 

Under these conditions, we have ik - j X, ) >> ( X, /“‘, so t.hat. we may employ 
the expansion (A.16) for H::‘(p). I’urthermore, assuming that 

0 >> p-l, (55) 

we have 1 X,L 18 >> 1, so that we may employ expansion (C.8) for Ph,,-i,2( cos 0). 
Substit,uting t,hese expansions in (.5.3), and t,akirlg into accouut (3.5) and 

(X16), we get’ 

where 

and BO is giveu by (0.2). 

Ym = eo - e + 2mn, 

6, = 0, -t 0 i- 2ma, 

(5.6) 

(5.7) 

(5.8) 

In writing (.5.6), we have already assumed that only the first few terms of the 
series give a significant, contribution, since the approxinlatious employed cor- 
respond t,o the poles (3.5). Thus, 

(5.9) 
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must, be a rapidly decreasing function of n. This will be true provided t,hat, 

ycj = 0” - 0 >> p-y (5.10) 

so t,hat (5.6) is valid in this region. 
The physical interpretation of (5.6) is well known (13). At short waveleugt hs, 

one may employ the concept of propagation along rays. The incident rays that 
are tangent to the sphere at, T1 and Tz (E‘ig. 5) excite a series of surface waves 
emanating from these points. These waves travel along the surfac-e with phase 
velocity slightly snialkr t.han that. in free space, due t.o the delay iti overcouiiug 
the curvature of the sphere. As t,hey travel along the surface, they shed radiation 
aloug t,augeutial directions, leadiug to the angular damping factor (5.9). 

A poirit, P within t,he geometrical shadow is reached by two rays emanating 
from the points T,’ and Ti where the tangents to the sphere from P meet the 
surface (Fig. 5). The corresponding angles travelled along the surface are, 
nccorditq to I’ig. 5, 

7” = (r/2) - cos-'(a/r.j - e = o. - 0, 

6” = (7r/2) - cos-‘(CL/T) + 0 = 00 + 8, 

in agreement wit.h (.?.i) and (5.8) for uz = 0. The paths TIT1’P and T,T,‘P 
are called “diffracted rays” in Keller’s geomet,rical theory of diffraction (13). 

The t,erms w&h vz 2 1 in (5.0) correspond t.o rays which have encircled the 
sphere m. times before leaving the surface, so that the corresponding augular 
paths are increased by 2ma. This interpretation is corroborated by t,he solution 
to the problem of diffraction of a pulse (I,$ j ,  where one can follow t#he diffracted 
wave front around t’he sphere. In each encirclement,, the rays go t,hrough the 

FIG. 
region. 

5. Diffracted rays TI!P1’P and TsTx’P reaching a point I’ in the geometriwl shadow 
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points T1 and Tz , where all diffracted rays meet. As is well know:u, passage 
through a focal point’ leads to a phase decrease by 7r ,/2. This explniua the factor 
[exp (.-i7r/2)]“” = (-1)” iu (5.6). 

The phase factor 

exp ; j&*” _ ($)“” + ix-[1 + rn(4/3-2~3]u~,i} 

also corresponds t,o the described optical pat.h (and similarly for the term in 
6,). Note the decrease of the phase velocit,y along the surface. 

The denomiuator (? - a’?)1’4(~ sin 0)“” mu also be obt.ained from t.he law of 
conservation of the intensit.y along a pencil of rays (13). This denonliuntor would 
vanish at Y = a, which is a caustic of diffracted rays, but, according IO (5.4), 
(5.6) is not valid there (the actual value, of course, is #(a, 0) = 0). It would 
also vanish at 0 = 0, but this is excluded by (3.5). 

The direction 0 = 0 is a focal line of diffracted rays. In fact, an observation 
point P on the axis is reached by a whole cone of diffracted rays tangent, to t’he 
sphere, instead of by t,wo rays only. This focusing effect, which is responsible 
for the well-known Poisson spot (cf. Section VIII), leads to an enhancenmnt of 
intensity near the axis. 

In fact, for 0 5 p-l, we rnustj employ (C.9) instead of (C.8), so that (5.6) 
is replaced by 

#(r, 0) M eFai6 (gJi3 (;o>“’ (&y” exp [ik(+” - aS)l”] 

. IEo (-U”C 
exp [iL(2mr + 0011 Jocx ej 

(5.11) 

4 [Ai’(-.&)I’ n * 

The surface waves associated with the poles LL are also lmown as “creeping 
modes” (5). It should be emphasized, however, that t’he above physical inter- 
pret#ation applies only to the lowest-order modes. As soon as the damping wit)hin a 
single wavelength beconres appreciable, t,he above concepts lose their validity. 
In practice, of course, only the lowest,-order modes give a significant contribution. 

\:I. THE NEARBY LIT REGION AND THE WKB APPROSIM4TION 

We shall now consider t$e behavior of t,he solution in the lit, region, not too 
close to the surface, so that (5.4) is assunred valid, but’ still not in the far field 
region, which will be treated in SecGon IX. We shall also st#ay away from the 
neighborhood of the shadow boundary, which will be discussed in Sect,ions VII 
and VIII. 

A. THE FORWAISD HALF-SPACE 

For 0 > eo, we have y. < 0 in (5.6). According to (5.9), this implies that 
the residue series containing y. starts out wit,h exponentjially increasing terms. 



HIGH-FREQUEKCY SCATTERING 41 

It’ does not, follow that the residue series representration becomes incorrect), for, 
as we have seen in Section IV, it still converges for 8 < a/2. What happens, 
however, is t,hat it. becomes useless for all practical purposes. The physical 
reason for t’his behavior is that the wave function is no longer exponentially 
damped, but cont’ains additional contribut,ions correspondiug to the incident 
and reflected waves in geometrical optics. 

A modification of Watmson’s transforrnat,ion t,o take into account these cow 
t.rihut ions in ihe lit region was first proposed by Fock (3). As reformulated by 
Franz (,$, n’), the basic idea is to substitute in (2.7), taken over the alternative 
cont,ow 13 in Fig. 1, the ideutit,y ((3.5) 

I)~-~,,~(cos 0) = -ie”“‘[P~-~;~( --OS 0) + 2i cos ~X&:~~p(cos O)]. (6.1) 

The integral of t-he first t.erm 011 the right-hand side of this expression is t.hen 
reduced to a residue series, which gives, as we shall see later, the continuation 
of (5.3) iuto the lit region. The second term camels the denominator cos aX 
in (2.7), so that the int,egrand no louger has poles at’ the positive half-irkegers, 
and the integral can be evaluated by the saddle-point nlet,hod, yielding the con- 
tribut,ions from the incident and reflected waves. We shall see, however, that 
the proposed contour of integration cau only be employed in the forward half- 
space (0 < r/2). In this region, we shall derive essentially the same results by a 
differcut method, which has the advantage of greater simplicit’y, as well as of 
showing more clearly t.he connection bekeen t,he lit. and shadow regions. This 
method does not, require the re-evaluation of the whole residue series, hut ouly 
of that part of the term m = 0 in (5.6) t,hat, “goes wrong” for 0 > 8” . 

In fact, for m 2 1, not only is the transformation that led to the residue series 
allowed For 0 5 19 < P (cf. (4.16) ), but also the corresponding residue series 
in (5.6) are all rapidly convergent, so that we need only he concerned with the 
tmn HI. := 0. The corresponding term in (2.17) is 

#Jr., e) = 2 lr f(x, (3, p)Px-lizi~~~ ejeix”‘“x dx. 
-* 

(G.2) 

Lei us make the splitting (cf. ( C.2) ) 

PA-l~2(cos e) = Q~~l;2(~os 8) + Q&P(COS e). (6.3) 

Then, according to (C.7), the term in y,, in (5.6) arises from Q:?l-:iz , while that 
in 6,) arises from QPljs . 

The residue series containing &, remains rapidly convergent in the lit region, 
provided t,hat (cf. (5.8) ) 

,P3(eI, + e) >> 1, (6.4) 

which will be assumed throughout. this section. The vicinity of t,he forward direc- 
tiou, where this assumption is uot fulfilled, will be considered in Section VIII. 
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Thus, we finally have to consider only the expression 

where the path of integration has to he t,aken slightly above the real axis in order 
to avoid the poles of Q:?i,i at the negative half-integers. This is done before the 
splitting (6.3). We shall see that the geometrical-optics approximation to the 
solution is entirely contained in this integral. 

The behavior of the int.egrand of (6.5) as / X 1 + = in I+ is similar to that 
of (4.1) with HI = 0. In fact, according to (4.6) and (C.7), the behavior of 
Ph--l,f(~~~ 8) in I+ is the same as that of Q:?1,2(~~~ 0). The discussion given 
in Section IV implies that t#he path of integration in (6.5) may be deformed 
at will in I+ , for 0 < 7r/2. 

E’ollowing Franz’s method (5), we shall deform it into the path I? shown in 
Fig. 6, going around t’he poles of S(X, p), and beginning and ending at infinity 
in the region between t’he curves 7 -+ 3?r/2 and 11 + -r/2, where q is defined 
by (2.27). According to Appendix A, HL”‘( p) 4 0 as / X 1 + cc in this region. 
It follows that we may split, (6.5) into t,wo integrals, corresponding to the two 
terms in the second member of (2.8), since each of the integrands will sepa- 
rately go to zero as / X j -+ 00 in t.his region. The imegral containing H:“‘(p) 

FIG. 6. X X X-Poles of the S-function; 0 0 O-zeros of the S-flmctiorl; 0 0 l -p_oles 
I.% 

of Q$A~,n(cos 0). The path of integration r goes through the saddle points A = kp and x = 
p sin O(O < x/2). 
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identic~ally vanishes, since the contour may be closed at infinity aud the inte- 
grand has no singularities within it. Finally, we get’ 

The path r crosses the real axis twice: first, between 0 and /3 and then between 
fi and p. We shall see that there is one saddle point’ of the integrand in each of 
these intervals, and I? will be taken through both saddle points. In the lower 
half-plane, to t,he left of t’he curve 7 -+ r (Fig. 6), the integrarld increases ex- 
ponentially for j X 1 + 00. However, the steepest descent paths corresponding to 
the t,wo saddle points can be joined by an arc going through the neighborhood of 
the first, zero of H:“(p), where the integrand is small (5). 

To t,ht: right’ of the curves h, and h2 in E’ig. 6, we have, according to Appendix A, 

H:“‘(p)/Hp’(p) 5% -1. (6.7) 

k’urtherrnore, we can employ the expansion (A.16) for H:“(p) and the expan- 
sion (C.‘7) for Qi?I,12(~~~ 0). Making the change of variable 

X = p sin w, (6.8) 

we find that the portion of the contour r to the right of h, and hq contributes 

$1 = (&L-J e-4 / A(w, P, 0) exp [ipa(w, 011 clw, (6.9) 

where the path of integration crosses the real w axis between w = 0 and w = 
r/2, and 

a( w, 0) = cos w + (w - 0) sin w, (6.10) 

i ‘( cot e 
A(w, p, 0) = (sin w cos w)l” 1 + L - - 

3 + 2 sin” w 
4p 2 sin w 6 co2 w 

\ (6.11) 

+ o(P-*) L 
f’ 

In t,his approximation, (6.9) is independent of the radius of the sphere, so that 
$I should correspond to the incident wave. This is indeed so, as will now be seen. 

The exponent (6.10) gives rise t,o a saddle point at 

a=e 

corresponding t,o X = p sin 8, as shown in Fig. 6. The corresponding steepest 
descent path crosses the real axis at an angle of r/4. 



Taking into account8 not, only the nlain term, bul also the first correction term 
iu the saddle-point method, the behavior of (6.9) for large values of p is found 
to be given by 

(612) 

where A, (Y and all their derivatives (denoted by -d’, CY~, . . ) are to bc taken at, 
the saddle point. 

Substitut’ing A and (Y by (6.10) and (6.11), it is found that the expression 
wit’hin square bracket’s identically vanishes, so that 

& = eiPcoso + O(p-2j (p >> 1). (6.13) 

Thus, the contributmion from the right-hand saddle point is essentially identical 
to the incident wave. 

To the left of the curves hI and 11~ (Fig. 6) we have, according to (A.lG), 

H:2’(p)/H~“(p) = exp -2i (0” - X2)1’2 - X cos-l 3 - 4” 
i [ 0 I) 

. l + q/y ” X2)“? [ ( 5 X2 > 1 
(614) 

l + j 8’ _ x2 + . . . 

and, again making the change of variable (6.8), we find that t#he contribut,ion 
from the portion of the contmour r to t,he left of h, aud hz is 

y6. = -(&y’ eiai4 j” B(w, p, 0, y) exp [ipti(w, 0, -y)l dw, (6.15) 

where 

y = a/r, (G.lG) 

6(w, 6, y) = cos w - 2(y” - sin’ w)li2 

+ sin w 
[ 

w - e + 2 cos? FE! (. )I (6.17) 
, 

Y 

B(w, p, 0, y) = (sin w cos w)l” G 

+ (2 sin’ w + 3~~) _ (3 + 2 sin” w) 
3(r* - sin2 w)~‘~ 6 cos3 w 

-1 + o(p-‘)). (Gs8) 
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The saddle poiut is determined by the condit’ion 

or 

e - ?I) 
sin 2.5 = y cos ~ 

( > 2 

p = t’ sin ~3 = a cos 
e--zT, 

( > ‘L’ (6.19) 

The corresponding value of X is il = p siu 12 = X-p (cf. Fig. 6 ). The steepest 
descetu path crosses t.he real axis at an angle of -s/-l. 

The physical interpretatiou of (6.19) is shown iu Fig. 7. Accordiug to (2.5), 
p = X/k may be interpreted as the impact paraulet,er associated wit,h au incident, 
ray. As showu in Fig. 7, this is precisely t,he incident ray AB that, reaches t,he 
observation point, P after being reflected at, t’he surface according to the laws of 
geometrical optics. The angle 

{ = J,<(S - 13) (620) 

is the cornplerneru of the angle of incidence. 
il saddle-point, evaluation of (6.15), including the first correction term, yields, 

siniilarly to (6.12), 

Be? 
” = -{I aN 1 sin e)1/2 1 ’ - 2p 126” 1 . [ 

E+C!$ 
3 

+;(q+;gJ+O(p-~)), c6*21) 

where B, 6, and their derivat#ives are to be evaluated at, the saddle point. 
It is convenient to express t#he result in term of the parameters { and 

s = 1’ cos 8 - g sin [, (6.22) 
d 

which measures the distance (t.aken along tbe ray) from t,he observation point 
t.o the caust.ic of the reflected rays. Subst.itut.ing (6.17), (6.18), and (6.19) in 
(6.21), it is found that 

This asymptotic expansiou in inverse powers of lz corresponds to the well- 
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FIG. 7. Physical interpretation of the left saddle point: p is the impact parameter of 
the incident ray AB which reaches point P after geometrical reflection at the surface. 

known WKB approximation, which has been investigat,ed by Luneburg (15) 
and Kline (16) in connection with Maxwell’s ecluations. 

The first term of (6.23) represents the reflected wave according to geometrical 
optics (first -order WKB approximation). The amplitude of t’his term t,akes 
into account the divergence of the rays after reflection at the surface. 

The remainder of (6.23) represents the correction to geometrical optics. 
It, contains the main correction term, which is proportional to Ic-‘, corresponding 
to the second-order WKB approximation. This term has also been computed by 
Keller, Lewis, and Seckler (17)) directly by t#he WKB method. Eyuat,ion (6.23) 
agrees with t,heir result.4 

The complete expression for the wave function in this region, according to 
the above results, is 

(6.24) 

, 

4Actually, the expression within square brackets in the second term of (6.23) differs 
from Keller, Lewis, and Seckler’s by the powers of 2 in the denominators, which are all 
less by one unit. However, it can be verified that this is due to a misprint in their paper. 
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where #1 and #, are given by (6.13) and (6.23), respectively. I~ronl the point of 
view of :a strict asymptotic: expansion, the residue series should Ilot appear in 
this expression, since it is exponentially small as compared with i he other two 
terms, and even wit,h respect, t’o higher-order correction term not taken into 
account in (6.23). However, from a physical point of view, this term is nmuling- 
ful, sirrcse it, represents the continuation of the surface waves (5.6) that were 
found in the shadow region. Note also that the residue series in 6” becomes sig- 
Ilifit.ant 111ear the shadow boundary, when condition (6.4) is no longer satisfied. 

B. THE BACKWAKI~ HALF-SPACE 

The above 1 reatnlent is no longer valid for 0 > a/3. According to (4.8 ) and 
(4.9), the integrand of (6.5) blows up exponent,ially for / X 1 ---f m in the region 
between the imaginary axis and t’he curve 7 -+ --a/2 in Fig. 6. Thus, the trans- 
formation that led lo (6.6) can no longer be performed. Furthernlore, the in- 
tegrand ‘of (6.6) no longer has a saddle point on the real axis between /3 and p; 
rather, it, is the ot,her term in (6.5), containing HP’(p), that has surh a saddle 
point. 

It is therefore necessary to modify the above procedure in the whole backward 
half-space. For this purpose, we shall again start from (6.5), but now taking 
the path of integration symmetrically about, the origin, from - x + ie to 
+ 3~ - ic (uote that t.here are no poles on t,he posit& real axis), and we ~nsl~ 
the substit,ution X + --X in t#he integral from 0 to + ,m - ic. Taking into ac- 
count (2.15) and the relation 

Q&(cos e) - eczirx QLy--l,P(~~~ O) = - e-‘“Xtan ?rW-l,z( --OS 81, (6.25) 

whic*h follows from (2.14) and (CA?), we find 

&“( Y, 0) = 3 lWm+“j(X, p, p)P~-l,~( -cos 0)eP”X tan aX tlX. (6.26) 

The behavior of the integrand in region 3 of l:ig. 4 differs from (4.7 ) (with 
)U = 0) ‘only by t,he replacement, 

exp[A(g - e)]-+exp[-ih($ - e)], 

so that, for X + u m (cf. (2.26) ), it behaves like 

exp [- I X I(7 + 0 - r)l, 

where 7 is given by (2.27). It follows that the path of integration in (6.26) may 
he deformed into the path from 0 t,o g 00 shown in Pig. 3, with 

s>n-e, (6.27) 
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(6.28) 

X Px-I,~( -cos t9)e- ixs’2 tan (nX)X dX. 

In particular, for 0 > r/2, we may subject 7 to t,he addit,ional rest,riction 
(2.31). Under t,hese conditions, (2.35) applies and (6.28) becomes 

&Y(r, 0) = eipcoso + +?. ) (6.29j 

where 

+r = -($y12 ,fiai4 lue Ha H:‘)(p)Px-l,2( ---OS 0) 
(6.30) 

X Pi2 tan (*X)X dX. 

We may now apply again (6.25) and the converse of t,he transformation that 
led from (6.5) to (6.26). The result is 

(6.31) 

(e > a/2), 

where the path of integration is that of Fig. 3 taken in the opposite sense. 
This integral may be evaluated by the saddle-point method. There is now a 

single saddle point on the real axis, at i; = kp, where p is again given by (6.19). 
In fact,, the integrand is identical to that of (6.6), the only difference being that 
the path of integrat,ion now goes over only one saddle point. Thus, the result of 
the saddle-point calculation is identical to (6.23). 

In spite of t,he fact t#hat t,he solution in t,he backward half-space is just the 
rontinuat,ion of the solution in the forward half-space, it does not, seem possible 
to extend t,he represent,at,ion (6.6) to 0 > r/2, or t,o ext.end (6.31) to 0 < x/2. 
The reason for this is that Px-~~~(s) becomes singular at. z = -1, so that one 
cannot find a single representation that, remains valid bot,h for 6’ = 0 and for 
0 = ?r. One needs a representation in terms of P~--1,2(cos 8) (cf. (6.2)) near 
B = 0, and one in terms of Px+~( - cos 8) (cf. (6.28) ) near 0 = 7r. The appearance 
of two saddle points in t,he forward half-space is also related to the diffraction 
effects that arise, as will be seen in Sect,ion VII, when t.hese point’s approach 
each other. 

We must st,ill see what happens t,o the residue series near 0 = ?r, because 
both the term $A”’ containing Q:?1:j2(~~~ 0) in (6.2) and the terms $, with 
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m 2 1 in (2.17) become singular at this point. However, we can write 

(6.32) 

x [Qi?)l,L(~~~ 0) - e2i*XQ:?l,2(~~~ Sj] exp iaX [ 

and employ t,he identity (cf. (C.5) and (C.6)) 

Q&(COS e) - eZirh Q&(COS e) = - i2rxPx-l,2( --OS e) (6.33) 

to get 

A?) + Fl 1c/?n = 2i 2 (-ijl”~~~(h,p,p~~A-l,~(-~~~e) 
m=l 

-cxp [i7rX (2wz - 31 h&i. (6'34) 

The cout’our of integration may he closed in the upper half-plane, leading to 
t,he residue series 

x Hip’ ( p j Ph,,-lid - cos e) 

which differs from (5.3) only by the subst,itut,ion 

PA,-1,2(~~~ ej --f --iexp (~T~,)P~,-~,~(-cos ej. (6.36) 

If 

T - e >i p-l, (6.37) 

we may employ the expansion (C.8) for Ph,--lIP ( - cos 0) and we find t#hat (6.35) 
is equivalent to the residue series appearing in (6.24), so t#hat (6.24) may be 
cont’inued to e > r/2. 

iYot,e that 
y1 = 2~ + (T/2) - COS-‘(a/7-) - e 
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no longer corresponds to one complete encirclement8 of the sphere, hut rather 
to the smallest, angle described by :I surface wave excked al T, before leaving 

I he surface (Fig. 8). 
If, instead of (6.37)) we have g - 0 5 p-‘, we must, employ (C1.9 ), which 

leads t’o 

This expression should be compared with (5.11). The same focusing effect 
already discussed there leads to an enhancement of t,he radiation from the surface 
waves in the backward direction. 

The approximat,ions employed in the present section fail when the correction 
terms appearing in (6.23) become large. This happens near the forward and 
the backward directions. The behavior near the backward direction will he 
discussed in Section IX, in connection with the scattering amplitude. The he- 
havior near the forward direction and t,he corresponding diffract,ion effects will 
be invest’igated in the next two sections. 

VII. DIFFRACTION EFFECTS IN THE NEAR REGIOIi 

A. THE NORMAL DERIVATIVE ON THE SURFACE 

According to Huygens’ Principle, the wave function at any point in space can 
be expressed in terms of its normal derivative on the surface of the sphere 
(where the wave function vanishes). 

FIG. 8. Diffracted rays T12’,‘P and T,2’,‘P reaching a point P in the lit region 
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The ,analogue of Kirchhoff’s approximation in classical diffraction theory 
would be t,o replace t’he exact, values of the normal derivative by the geometrical 
optics alq~roxin~at~ion: 

where we have introduced tbe notation 

(7.2) 

(7.3) 

The expression (7.1) corresponds to the geometrical shadow region and (7.2) 
to the geometrically lit region on the surface. The factor 2 in (7.2) arises from 
joining the contributions of the incident and geomet8rically reflected waves. 

Subst,it)uting (7.1) and (7.2) in the Huygens-Iiirchhoff integral, one can 
easily derive the corresponding approximation for the scattering amplitude 
(18). II is found to be the sum of two terms, one of which corresponds to the 
geometrically reflected wave, while t’he other one corresponds to the diffracted 
wave in the classical t’heory of ditiract,ion by a circular disc of radius a. The latter 
term, which is also l~nown as the “shadow-forming wave,” depends only on the 
shadow contour of t,he obstacle, so that it is the same for a sphere or for a disc. 

Since we are later going to compare our results with classical diffract,ion 
theory, it is of interest to discuss t,he accuracy of Kirchhoff’s approximnt’ion 
by evaluating x. The only significant cont,ribution arises from (6.5) : 

where we have employed (2.8) and the Wronskian relation 

w[H:“(p), Igyp)] = -(a;/*/?). (7.5) 

For o > r/2, the main contribution to (7.4) arises from a saddle point, on the 
real axis, to the left of X = 0, where, according to (A.lG) and (C.7), 

Xei”““Qj,t)l,;2( cos 0)/H:“(p) ,z i (X/sin e)1i2(p2 - X”)“4 

(7.6) 
X exp -i(p” - ~~~~~~ + ix i - e + COS-‘(x/p> , 

so that the saddle-point, is at 

cos-l (X,/p) = 0 - (7r/2) + X = p sin 8. (7.7) 
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The saddle-point evaluation gives 

(11 
x0 2: 2i cos Qflcose (0 - r/2 >> P-I’“), (7.8) 

in agreement with the geometrical opt)ics approximation (7.2). 
The condition in parent’heses arises from the fact that’ (A.16) is valid only 

for p - x >> p”3. As 0 approaches r/2, the saddle point (7.7) moves towards 
X = p and, if 1 8 - (p/l)) 1 ,< p-1’3, we have to employ t’he approximat#ion 
(A.17) : 

fp(p) ,>; 2131P)‘I”P-““13di(,~e”i”:3) (1 x - p 1 ,< pa), (7.9) 

where 

x = (2/py3(x - 0). (7.10) 

Since the main contribution to the integral in this case arises from 1 x / 5 1, we 
may extend the range of integration where (7.9) is employed to infinity, with 
the following result : 

xp c e -+d6 exp (iP[(n/2) - O)]) 5(T) 
a(sin O)1/z - (4PY 

(I 0 - (T/2) 1 2 P3), (7.11) 

where 

7 = (p/sy[(a/q - 01 (7.12) 

and 

= -e i77/3 

s 

- exp Qia/3) exl, (e--id64 dw 
- 

m exp (--i*/3) Ai * 

(7.13) 

Finally, if (r/2) - 0 >> p-“3, we may evaluate (7.4) by closing t’he path of 
integration in the upper half-plane, where the integrand is exponentially de- 
creasing at infinity. This leads to a residue series at the poles of [H~‘(p)]-l. The 
terms in the series are then rapidly decreasing and t,he main contribution arises 
from the poles (3.5) : 

(1) 2 I/3 

x0 h” - 
0 p && 

exp (iX,[(7r/2) - 41 
Ai’( -en) ( 

T _ e >. p-1~3 

2 
) . (7.14) 

This corresponds to the surface waves associated with yo in (5.6). The normal 

derivative is exponentially damped in the shadow region % - 0 >> p-1’3, in good 

agreement with (7.1). 
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Thus, the ouly domaiu where Iiirchhoff’s approximation (7.1) - (7.3) fails 
to he accurate is the penumbra regiou 

/ I9 - (7r,/2) 1 2 p-“” (7.15) 

lvhere the uormal derivative is given by (7.11). The function F(T), Tvhich gives 
the transition from light to shadow, was iutjroduced by Fock (3). 

There renlaius t)o be shown that (7.11) goes over smoothly into (7.8) or (7.14) 
for / 0 -- (7r/2) ( >> pP”3. The asymptotic behavior of the integraud of (7.13) 
iu the w--plane follom from Appendix 1). It, is found that t’he pat)h of integrat#iou, 
represeut,ed by t,he straight line D iu Fig. 9, may be deformed at mill, provided 
that it begins and ends at infinity outside of t’he shaded sector. 

If 7 >> 1, we may evaluat’e (7.13) by moving the path of integrat)ion to in- 
finity in the left half-plane, which leads to a residue series at the poles -zn : 

5(T) = 27ciri6 c 
exp ( -e+‘6mn) 

(7 >> 1). (7.16) 
11 ai’( -Lx,) 

On the other hand, if 7 << -1, we may evaluate (7.13) by the saddle-point 
metmhod. For t.his purpose, D is deformed to the right over the region where 
1 w 1 >> 1, so t.hat the expansion (D.4) can be employed. The saddle point is 
located at 

m = e--ia/3T2 (7.17) 

Imw 

Rew 

FIG. 9.. Paths of integration for (7.13); G is the saddle point. X X X-Poles of [Ai(w1. 
The path must begin and end at infinity outside of the shaded sector. 
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and tbe corresponding path of integration C is shown in Fig. 9. The result of 
the saddle-point evaluation is 

F(T) 2 4ae-zr’3 17 / exp (i / 7 1 3/3j (T << -1) (7.18) 

Substituting (7.16) in (7.11), we get (7.14). SubstitJuting (7.18) in (7.11), 
we find 

# M 2i [(r/2) - 4 
(sin 0)“” 

exp{iB[(a - 0) - k(; - 8>11, (7.19) 

which agrees with (7.8) for 6’ - (r/2) >> fl-“3 (but &ill not too large, so that 
/3 cos 8 is well approximated by the expansion within curly bracket,s in (7.19) ). 

Thus, Fock’s function indeed interpolates smoothly between t)he shadow and 
lit regions on the surface of the sphere. However, it cannot be employed in the 
lit region too far beyond 0 - (r/2) N p?. 

B. THE NEIGHBORHOOD OF THE SHADOW BOUNDARY 

Let us now consider the behavior of the wave function in t’he neighborhood 
of the geomet,rical shadow boundary, 0 z B0 (cf. (5.2)), at not too large a dis- 
tance from the sphere, 

r << @“‘a. (7.20) 

Under these conditions it follows from (5.8) and (5.9) that 

I exp (zhdojI << 1, (7.21) 

so that we need only be concerned with #, which is given by (6.6). 
We have seen that (6.6) has saddle points at X = p sin 0 and X = kp, where 

p is given by (6.19). The neighborhood of the shadow boundary is characterized 
by the fact that these two saddle points approach each other, moving toward 
the point X = /3. The main contribution to the integral then arises from the 
neighborhood of X = 0, so that it is convenient to take the path of integration 
through this point and to split it in the following form: 

(7.22) 

where nlw and u2 ~1 denot’e the beginning and end points of r, as illust,rated 
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in Fig. 6, and we have used the identity 

H:“‘(p)/H:“(p) = aJx(p)/H:“(p) - 1. 17.23) 

IH &f ‘, we may employ the same approximations tbat led to (6.9). Restricting 
o\lrselves to the main term of (6.11), we find 

1;2 

e 
--ia/4 

(7.24) 

(sin w cos w) I” exp (ip[cos w + (w - 0) sin w] 1 ~lw. 

Above the shadow boundary, the int,egrand st,ill has a saddle point at Ii’ = 0, 
as in (6.10). III any case, for 8 M 60 , the main contribution comes from the 
neighborhood of the lower limit of integration, so that we may expand the 
integrand around w = 6 and extend the corresponding range of integration to 
infinity, wit.h the following result: 

where we have substit,uted p cos 0 = kx. 
The condition for t’he validity of this approximation is that higher-order terms 

in t,he expansion of the exponent in (7.24) shall be negligible in the relevant 
portion of the domain of integration. This leads to t,he following condit,ions: 

kz >> pa, (7.26) 

1 e - eo 1 << p-I’“. (7.27) 

The above result may be rewritten as follows: 

(11 
*03 ze iJ-‘4[j7( cc ) - F( - y)]/d$j (7.28) 

where 
v = (li~/~)~‘~(e - e,) (7.29) 

and 

NV) = 6” exp Cim2/2) cl7 (7.30) 

is the Fresnel integral. Since 

(7.31) 

(7.28) becomes 

(1) 
1 ikz eikr--iri4 

+ 2 
o3 k-e - ~ F( 3). 

v5 
(7.32) 
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This is analogous to the classical E’rcsnel diffract’ion pattern of a straight edge 
(19). On the geometrical shadow boundary, where v = 0 (cf. (7.29) ), it would 
give one half the amplitude of the incident, wave, which is a well-known result. 

Now let us consider t,he two remaining terms of (7.22). Since the main con- 
t,ribution to the integrals comes from the neighborhood of X = p, we may em- 
ploy the approximations (A.17) and (A.18), which give 

@(p)/@‘(p) M e2i”i3Ai(ne~“““/3)/Ai(xe2’“‘3) (A < p), (7.33) 

2J@)/H?‘(@ ,c e’“‘3Ai(~))lAi(ze2’“‘3) (h > pj, (7.34) 

where x is defined by (7.10). 
For the remaining factors of the integrand, we may employ the same approxi- 

mations that led to (7.24), so that we get’, wit’h the subst’itution (6.8)) 

(1) 
901 + $02 (l) ,z -(eeJ” eP4{e2i.‘3 i”r., (sin w cos w)l” 

A~(~~-W) 

’ Ai(seW3) exp (ip[cos w + (w - 0) sin w]) dw 

(7.35) 

s 

q’rn 
+ fF3 o. 

X exp (ip[cos w + (w - 0) sin w] } ilw 
1 

. 

In the neighborhood of 6 = B. , we may again employ the expansion around 
w = 0 that led to (7.25)) with the following result : 

(1) 
$01 + J/o2 

(l) E _ (k~2 e--iri4eikr {e2iT/3 1: exp [ikx(w - e)2/2] 

(7.36) 

s 

m 
+ eia13 exp [iik(w - e)“/a] 

Ai 
@o Az(xe2i”‘3) dw 

!  
’ 

where 

2 0 
l/3 

2= - 
P 

p(sinw - sinBo) = 2(~Ji3pcos~+)sin~+). (7.37) 

The discussion of the asympt,otic behavior of the Airy function given in Ap- 
pendix D shows that values of ] x: j >> 1 do not contribute much to the integrals 
in (7.36). On t,he other hand, p//f” 2 /32’3 >> 1, so t,hat, according to (7.37), 
only small values of [ w - 0, ] give a significant contribution. Under these 
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conditJions, we may replace (7.37) by 

x :2 (2//3)““p cos f3”(W - Bo) 

where the last approximation follows from 

:z (2/p)%(w - e,), 

e. :Z e. 

(7.38) 

Xakillg the change of variable (7.38) in (7.36), we find 

(1) (1) 
#Ol +!bo2 =--a 

-li2e--iri4qeikz 
exp (i,ta + iq’2’) 

x Ai(xe-2i”‘3) 
m (7.39) 

Lli(xe2i~/3) “’ + e 
i*/3 

s exp (i(x + iq2x2) 
Ai 

0 
Ai(ze2ir’3) “” ’ 1 

where v is given by (7.29)) and 

E = (P/2)1’3(o - eo), ?j = (p/2)““/(2kx)“‘. (7.40) 

Accorlding to (7.26) and (7.27), we have ( t 1 << 1, 7 << 1, so that, in the sig- 
nificant range of t)he domain of integration, the exponential fun&on in the 
integrands of (7.39) may be replaced by unity, wit’h the following result: 

l&j:’ + $6;’ *: - CeCir’4f11’3( 2akz)~“* exp (ikz + iav’j’l), (7.41) 

where 

21’3~ = e2i*i3 -1 A;;,;;;::, s dx + eisi3 (7.42) 

The constant C has been evaluat’ed by Rubinow and Wu (20) who found 

C .Z 0.99615ei”‘3. (7.43) 

It follows from (7.28) and (7.41) t’hat 

p( cc ) _ p(vv) _ 21’3~~ exp kv2j2) . 1 (7.44) 
TV 

The conditions for the validity of this result, besides (7.27), are (7.20) and 
(7.26)) -which nlay be combined int)o i’he following condition: 

pa << x << p3a. (7.45) 

It is readily seen that, for 1 v / >> 1, either in the lit or in the shadow region, 
t’he last lerm of (7.44) is a small correction, of the order of 1 E 1 , to the amplitude 
of the diffracted wave. 

Thus, if 1 e - e. ( << p-l”, in the domain (7.45)) the transition from light to 
shadow is described by an angular Fresnel diffraction pattern very similar to the 
classical one for a straight edge. The effects of the curvature of t’he sphere come 
in throu.gh small correction terms, of the order of 1 { I . If 1 e - B. j >> p-1’3, 
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we go over either lo the lit) region, where (6.23) is valid, or to the shadow region, 
where (5.6) is valid (cf. (5.10)). 

Finally, let us consider the immediate neighborhood of the shadow boundary, 
where ( cf. (7.29)) 

jv[ <<l. (7.46) 

We may then approximate the Fresnel integral by t,he first. term in its power 
series expansion, 

-F( -v) M v = p co’;;;& 00) z P(sin(;L;)l;~ 4) ) (7.47) 

and the exponential in t’he last t,erm of (7.44) may be replaced by unity. Taking 
into account, (7.31)) we get 

Defining the shadow boundary by t’he condition that 1 + 1 = ,“i on it, we 
find from (7.48) that bhe shadow boundary no longer lies at r sin 0 = a, as in 
(7.32), but rather at 

r sin e = a + s, (7.49) 

where 

s = a( Re C + Im C)/p2’3 = 1.36077a//3”3. (7.50) 

This is identical to the result found by Rubinow and Keller (81) for a cir- 
cular cylinder and by S. 0. Rice (22) for a parabolic cylinder, thus confirming, 
in the present example, Rubinow and Keller’s conjecture that the result is true 
also for three-dimensional obstacles. 

There remains to examine the consistency of the various approximations 
leading to (7.48). According to (7.47), (7.49), and (7.50), the order of magni- 
tude of v  at the (shifted) shadow boundary is given by 

113 

V+q$2- (7.51) 

According to (7.26), this satisfies condition (7.46). 
It is readily verified that, in the domain defined by (7.27) and (7.45), the 

neglected terms in (6.11) and in t’he approximations that were made in connec- 
tion with (7.3.5) give contributions of a higher order of magnitude. 

VIII. THE FRESNEL-LOMMEL REGION 

A. BASIC APPROXIMATIONS 

According to classical diffraction theory, the Fresnel region is t,he domain, 
in the neighborhood of t’he shadow boundary, viewed from which the obstacle 
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contains a large number of Fresnel zones, i.e., )’ << a’/& where X is the wave- 
length. We shall now consider the behavior of the wave funct~ion in this region, 
at, distances larger than those allowed by (7.20)) i.e., 

pa 5 I’ << pa. (8.1) 

?rt, the same t,ime, we shall stay witjhin t#he geometrical shadow, or not too far 
outside: 

0 5 I!& - a/r. i8."J) 

We shal1 call this t,he Fresnel-Lommel region, because, as will be see11 later, 
the wave function t#hroughout most of this region can be approximated by 
Lommelk classical solution to the problem of diffraction by a circular disc (23). 

According to (5.8), (5.9), (8.1), and (8.2), condition (7.21) is no longer 
satisfied in Ibis region, but rather / exp (ix,S,)l 2 1. Thus, the integral con- 
taining Q:?1-:/2(cos 0) in (6.2) can no longer be expressed as a residue series and 
we must, consider, in the place of (7.22), 

(8.3) 

s a2’li - HY’(~)Px-~I~(cos O)eix”‘*X dX = $01 + Go2 + -+h3 . 

B 1 
The third term of (8.3), like that of (7.22), depends on the scatterer only 

through its radius appearing in the lower limit of integration. Roughly, it repre- 
sents the efiect of cutting off from t#he incident wave all the rays that meet the 
sphere, so that t,he sphere behaves, in this respect,, like an opaque disc of radius a. 
We shall see t#hat this term gives rise to t#he classical diffraction pattern of a 
circular disc. It corresponds to t’he “shadow-forming wave” mentioned in Section 
VII. 

The main contribut,ion to t,he integrals in (8.3) still arises from the neighbor- 
hood of X = /3, so that H?‘(p) may be replaced by t,he expansion (A.16). On 
the other hand, since we want, to consider both the behavior for fi0 2 1 and for 
/M >> IL, we shall employ the uniform asymptotic expansion ((7.11) of 
f’h--1,2(co~ 0). Finally, in tiol and Go2 , we may again employ the approximations 
(7.33) and (7.34). The results are 

4431 + $02 = - k (&)‘z(ezir’3 Jlw z:ZJ exp [i(p” - X2)“2 

+ iX sin-’ (X/p)].Jo( M)k dX + eisi3 
s 

rpm Ai 

L4i(xe2i*i3) 
exp [i(p’ - X’)l” (8.4) 

13 

+ iX sin-’ (X/p)lJo(XO>X dX J , 
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where L is given by (7.10) and 

#03 Z -ip(8jsin 6)l” 
s 

#Lm 
exp {ipI(l - 7’)l” 

air (8.5) 

+ 7 sin-’ 7]}Jo(pf37)(1 - 72)-1’47 C/T, 

where we have made X = ~7. 
Since the main contributiou to t,he integral in (8.5) comes from t,he neighbor- 

hood of the lower limit T N a/r 5 fl-“3 << 1, we may expand the integrand in 
powers of 7, keeping only the main t,errns: 

tio3 :2 -+(B/sin B)“‘eip 
s 

m 
exp (i~T”~2>~o(peT>T dr, (8.6) air 

where the upper limit has been replaced by x: . 
According to Appendix E, this integral may be expressed in terms of Lonunel 

functions. In fact), it follows from (E.5) that 

where V. and 1’1 are Lonunel functions of orders zero and one. 
Similarly, in (8.4), we may approximate 

(p2 - X’)l” + X sin-’ (X/p) ,2 p + (X2/3p). (8.8) 

Taking 2 as new variable of integrat’ion, we find 

x2/2/7 = lca2/2r + (p/2y3ax/r + (~/2)“‘3x”/2,. (8.9) 

The main contribution to the integrals comes from / z 1 5 1, because of the 
Airy functions. Thus, according to (8.1), the last term of (8.9) is negligible, 
and we find 

x tPi3 
1 s 

0 Ai(ze-zi”‘3) 

-= Ai(ze2i*‘3) 
exp[i(~)llig~],[,,+(~)li3e~](iz (8.10) 

+ eilr/3 

s 
- Ai 

o Ai(xe2i*‘3) 

Putting together (8.7) and (8.10), we finally get 

$0x(-&)li’exp(ilir+ i$$)f(s,t,u,2’), (8.11) 
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where 

f(s, t, u, v) = L(u, v) + isF(s, t, v), (8.12) 

L(ZL, v) = T’,,(u, 2,) + iT’l(U, v), (8.13) 

F(s, t, v) = e2in’3 
s 

O Ai(.re-“i”‘“) eiszJo(v + fxl dr 
--m A i( .re2in’3) 

+ eia’3 l 
cII Ai (8.14) 

Ai(xe2”,3) PJo(D + tcr) dr, 

and 

s = (p/a)““a,‘r, t = (p/a)““& 

u = ka2/r = /3ajr, v = pe = iu,ls. 
(8.15) 

Conditions (8.1) and (8.2) are equivalent t,o 

s 5 1, t 5 1, ‘IL >> 1. (8.16) 

According to classical diffraction theory, the wave function in t,he Fresnel 
region due to the diffraction of a plane wave by a circular disc of radius a is (23) 

in the approximation where sin 6 2 0. In t’his approximat#ion, (8.1T) coincides 
wit!h (8.i’). 

Thus, in (8.12), L(u, v) represents Lommel’s approximat,ion, while F(s, t, V) 
is a correction to classical diffraction theory of the same type as t,he Icock t,erms 
discussed in Section VII. 

B. BEHAVIOR ON THE AXIS (POISSON SPOT) 

For 0 = 0 ( t’ = x), we have, according to (E.3), 

L(1L, 0) = 1, 

so that 

where 

#ozexp(ike + Lh$f(s), 

(8.18) 

In Lommel’s approximation, the second term would be absent, so that we 
would have 1 tie 1 = 1, i.e., the intensity along the axis would be identical to 
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that of t,he incident wave. This corresponds to the well-known Poisson spot. 
According to Appendix D, :ii([e”“‘“)/Ai( {e-i”‘3) goes to zero like 

ev I-55 I .t I “* sin (3~/2)] 

when { = 1 { 1 exp (iq) goes to infinity in the sector -Ia/3 < crp < 2?r, so that 
the path of integration in the first, integral of (8.20) may be rotated by r.13 into 
the fourth yuadrant, with the following result: 

f(S) = 1 + isei”‘3 

Both integrands now tend to zero like exp ( -+~.c”“) for II: + tc . 
At distances x << $“a (s >> l), the residue series representation (5.11) should 

converge well, so that the wave function must become exponentially small. To 
recover this result from (8.21), let us note that, by partial integration, (8.21) 
becomes 

s m exp (isz) 
2, ,, [Ai(ze”ir/3)]” rh, (8.2”) 

where we have employed the Wronskian relation (D.2). This result may be 
rewritten as 

(8.23) 

where I‘ is t#he path shown in Fig. 10, going from 00 e’i*‘3 to 00. 
If s >> 1, the integral can be evaluated by reducing it to a series of residues 

at the poles cn = eiT’3.rm , where --s,~ is the ,nth zero of the Airy function. The 
result is 

(8.24) 

Substituting this in (8.19), we find 

It may readily be verified that this result coincides with t,he term nl = 0 of 
(5.11), with x >> a. Thus, the wave function along t,he axis is exponentially 
small for 2 << $‘3a. 
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Iml 

FIG. 10. P:Fth of integration in (8.23). X X X-Poles of the integrand. The integrand 
goes to zero :lt infinity outside of the shaded sector, except along the line of poles. 

On the other hand, for x >> p1’3n (s << l), we can expand f(s) in a power series, 
m 

.f( s) = 1 + isc i”M,s”/n! (8.26) n=O 

where, according to (8.21)) 

;l,[, zz (p3 
s 

- Ai 
o Ai(zeLi~‘3) ICn dx + ’ 

im+l)r/3 

s 

- Ai 
o A+@m’“) x” rlr. (8.27) 

The first’ few coefficients M, have been colnput’ed by Wu (24). In particular, 

Jl, zz 21’3c = 1.255@‘3 dl1 = 0.5323P3, (8.28) 

where c’ is given by (7.43). 
Suhst~ituting (8.26) in (8.19), we get 

Thus, for z >> @1’3a, the int,ensity approaches that of t.he incident wave. 
On compsring (8.29) with (8.25), we see that a Poisson spot of intensity 
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comparable to that of the incident wave begins to develop at a distance 
l/3 2-P a (8.30) 

from the sphere. This is in contrast to the case of a circular disc, where the I’ois- 
son spot begins to appear at a distance x - a from the plane of the disc (6, 1). 
103). 

C. BEHAVIOR AWAY FROM THE AXIS 

Let us consider first the term L(u, v), which corresponds to the classical dif- 
fraction pattern (cf. (8.13)). The behavior of this term depends on the parameter 

u/v = a/r0 M 60/t3. (8.31) 

In the lit region, 0 >> 00 , we can employ the expansion (E.l), which leads to 

L(u,v) = exp[-i(u+g)] + i;4Jl(v) + (~~J2iv) + --. i8.32) 

(u << v). 

The corresponding classical wave function, according to (8.11), would be 

so that $U approaches the incident wave. 
Near the shadow boundary, at e = a/r, we can employ (E.2)) which gives 

L(u, u) = 4%[emi” + JO(U)], (8.34) 

so that 

4k~-~(&~i2ex*(ip - ik$)[l + exp(ik;)JO(T)] (8.3j) 

The factor >i corresponds to the classical behavior at the shadow boundary 
discussed in Section VII. For r >> f11’3a, the shift of the shadow boundary is no 
longer given by (7.50) : it increases with 1’ and then oscillates. At distances r - @a, 
which mark the transition to the Fraunhofer region, the concept of shadow 
boundary is already meaningless. 

Finally, well within the geometrical shadow region, 0 << 190 , we can employ 
the expansion (E.6) : 

L(u, v> %JJo(V) -i%&(o) - $ 2J?(v) + .-- 
0 

(u >> v), (8.36) 
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which gives 

2 .12cpej + . . . 1 
(8.37) (8 << u/r). 

Sow let us consider the effect of the Fock-type terms F(s, t, V) in (8.12). Just 
as in (8.21), we can rewrite (8.14 j as 

Fis, t, v) = eilri3 exp ( - ieP3s.r)Jo( 2, - epiTi3tx) d.r 

+ lm A$?,,) 

(8.38) 

exp (isx)Jo(v + a) czx 1 . 

In the shadow region, for r << /3”3a (s >> I), it can be shown, as in (8.25), 
that’ isF( S, t, V) cancels the main t,erm in L(u, v), leaving as a remainder a resi- 
due series corresponding to (5.11). 

For r 2: /3”3a (S 5 1) and 0 << /I-“~ (t << I), the main contribution to the in- 
tegrals (8.38) arises from small values of the argument, because of the Airy 
functions. Therefore, we may employ the expansion 

Jo(v + tz) = Jo(v) - kIdl(V) + .. . (8.39) 

and similarly for the other term, with the following result: 

isF(s, t:, v) = If(s) - l]Jo(v) - tg(s)Jr(u) + . . . (s 5 1, t << l), (8.40) 

where f(s) is given by (8.21) and 

exp (isz)x dx - eP3 

’ l- Ai:,::.‘,,,, 

(8.41) 
exp ( -ie-i”‘3sx)x dx 1 . 

111 parhxlar, if also s << 1, we may expand the exponentials in power series, 
and we get, with the help of (8.27), 

F(s, t, v) M (iv,, + iM*s + . . . )Jo(v) 

- AI,tJl(v) + . ‘. (s << 1, t << 1). 
(8.42) 

Taking into account (8.11) and (8.37), this leads to 

$0 e (~~~2exp (& + ik $([l + i&z, (5)“‘: - MI(~~“(~~+ . . .] 

X Jo(@) - i[, + fi&(;>‘i’(;y+ -];J,(/30) + --) (8.43) 

Cr. >> P3f3, e << U/Y). 
Note that (8.29) is a part,icular case of this result. 
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In t,he neighborhood of the axis, for 1‘ >> ~~‘~a, the intensity, accordiug to 
(8.431, behaves like J,j2(/30) tinles the int’ensit’y of the incident wave, so that the 
Poisson spot actually corresponds to a “Poisson cone” of angular opening 

e - p-l. (8.44) 

In this region, the Fock hcrms give only a small come&ion, having t.he saule 
angular dependence as the Fresnel-Lomnel approximation. 

Finally, if 0 >> pP3, we must recover the reflected wave, given by (6.23). It 
cm be verified that it arises from a saddle point in one of the Fock terms. How- 
ever, we shall not discuss this problem here; the analogous but’ simpler case of 
t,he far field will he discussed in the next Section. 

IS. THE SCATTERING AMPLITIjDE 

A. BEHAVIOR AWAY FROM FOREYARD OR BACKYARD DIRECTIONS 

lzor 1’ + 30, we have 

2)(P, e) :z eik= + f(k, @)eikr/r, f9*li 

where f( k, ej is the scattering amplitude. If 0 is not too close to 0 or T, .f(k, e) 
may he obtained from the expressions derived in Section VI, which remain 
valid for r + co. Actually, t’he asymptotic form (9.1) is already valid iu the 
“Fraunhofer region” defined by 1’ >> flu (cf. Section iTHI). 

~&cording to (6.19) and Fig. 7, the angle zz approaches zero as 1’ + ic, so 
that [ + e/a in (6.20) and the saddle point approaches 

X = kp = ~COS (e/a). (9.2, 

This corresponds to t,he geornet.rically reflected ray in the direction 8, as shown 
in Fig. 11. 

It follows from (6.23) and (6.24) that 

,f(k 0) = .Mk e! + fdk, 01, 

where 

(9.3) 

f,(k,e) = -gexp -2ipsin: 

( )( 

1 + 2 + .a. 
2p sin” 2 

1 

(9.4) 

is t.he “reflection” amplitude and 

f,,,(k, 0) = e--iri6 2 2 
0 

“’ 
2 p 

(T sin e)+ 

, 
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FIG. 11. Geomet.rically reflect~ed ray in direction 8. 

where, aceording to (5.7) and (5.8), 

I 
Ym = Smr - 8, 6 nA’ = 3mT + 8. (9.6) 

The main term of (9.4) corresponds t’o t’he geometrical optics ~zpI~roXiIll:~tioll, 
whereas (S.:i) represents the radiation from t’he surface waves. 

The expression (9.4 j was obtained as a limiting case of (6.83), so thnt it rcpre- 
sents the contribut,iou from the neighborhood of the saddle point 19.2) in (6.6) 
or (6.31). It may also be derived by substituting dire&y in (6.6) or (ci.31) the 
espausion 

which leads to 

19.8) 

A3 iu (6.6) or (Ml), t,he path r crosses t.he real axis at the saddle point, 
(9.2), at an angle of -CT/~ (Fig. 12). Since the slain contribut,ion arises from the 
neighborhood of this point,, the pat’h of intmegration may be extended to infinity 
on both sides, provided that the integral converges. 

According to Appendix A and (C.7), the integrand of (9.8) behaves at in- 
finity like exp [iX(%r - e)] in region C of E’ig. 12 and like exp ( - iX8) in rcgiou 
A. Thus, for e # 0, the path r may begin at infinity in C and end at infinit,y in 
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Im X 

FIG. 12. Paths of integration for (9.8). X X X-Poles of 8(X, 6). 

A. In particular, it is equivalent to t’he path I“ of Fig. 12, which is taken to be 
symmetrical about the origin. This will be useful later on. 

Substituting (6.14) and (C.7) in (9.8) and employing (6.21), we are led 
again to (9.4). 

The result (9.4) can no longer be applied when the correction terms in the 
expression within brackets become comparable to the main term, i.e., for o 5 
p-1’3. Furthermore, the asympt,otic expansion (C.7) of Q~?l,z(cos 0) for 0 = 7r - 6 
is only valid for 1 XE 1 >> 1 or, with X = i; = 0 sin (c/2) M @/2, for E >> 0-l”. 
Thus the conditions for the validity of the above results are 

e >> p-y T - e >> p-l”. (9.9) 

In the next sections, we shall examine what happens near the forward and 
backward directions, when these conditions are no longer satisfied. 

B. THE NEIGHBORHOOD OF THE FORWARD DIRECTION 

Let us consider first the neighborhood of the forward direction, defined by 
o 5 @-1’3. In this domain, not only does (9.4) lose its validity, but also the residue 
series involving 6,’ in (9.5) is no longer rapidly convergent, so that we must 
make a rearrangement’ similar t)o that of Section VIII, namely, 

f(k, e) = h(k 0) + .Lo, 01, (9.10) 
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where, according to Section VIII and (C.ll), 

Jrea(k, e) = e--i*‘6a 

and fb(k, 0) is defined by 

$b” 2: eLk3 + jo(k, 8)eik’/9 (1 

where $0 is given by (8.3). 
Since (8.10) remains valid for r -+ 30, we find at once that 

According to (X3), we have 

In the integral from 0 to /3, we cm replace H?‘(p) by its asynlptotmic expansion 
for p -+ co, so t,hat 

tio3 ,z k p’ 1’ I&? (cos 0)x dX + (c)l” eP4 

x r 
H:“(p )PA-~;~ (cos fl)e’““‘2h clX 

On t,he ot,her hand, since 

(8. - 

tan (TX, = i - 2i 
ezi*’ 

1 + e2irh ’ 

it follows fro111 (2.34), with u = mz (cf. Fig. 2 and Fig. 6), t’hat 

(9.15) 
a>. 

(9.16) 

(9.17) 

A(p, 8) = r:y” eeiTi4 lirn H:“(p)Pk--I:2 (cos O)ei”“‘” 1 fi&i.k X dX. (9.18) 

In the last integral, the path of int,egrat,ion has been shiftred to t,he posit,ive 
imaginary axis, which is allowed because of t,he ext,ra convergence factor 



The ~ec*ond tern1 of this expression can he cvuluated by iuyert,ing for 
f-‘x-lrL( c’os 0) the uniforln asymptotic expansion ((1.11) sud integrating term by 
tcm with the help of 1 he well-known formula 

s 2 -“+lJn (.r ) d.r = - .l-T’+lJ,-l( .I-). (9.20) 
The result is 

Otr the other hand, making X = & in (9.18), we find 

According to Watson (25)) wc n~ay employ, for all p 2 0 and p >> 1, the 
asympt,otjic expansion 

1,‘2 
(p” + 3-l’” 

so t.hat 

(p’ + p2)lj2 - p sinh -1 P - 
P 

l/Z 
erri2. 

Furthennorc, according t#o (C.12)) 

Subst’ituting 

1 
\ (9.23) ; +? 21’ 

(9.24) 

P,p-lj2( cos 0) 1 5 (~0s O)-“2e”“‘2 (0 I e < a.12). (9.25) 

9.24) and (9.2.5 j in (9.22), we find 

/ A j < $ (cos e)-lispM1 (7’ --) a). (9.26) 

Since we are only interest.ed in the domain 0 5 p --li3, it follows from (9.19), 
(9.21), and (9.26) that 

Go3 M e ipros% + ipa (&)‘:‘[y + oig-‘I] q (r-+ rn). (9.27) 
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Conlbining this with (9.13), w-e finally obtain 

( 9.28 ) 

gc,(k, e) = 2</l(pe)!pe, 

(?p(li, 8) = (2aj”“F(o, 1, II), 

P(s, t, ~1) being defined in (8.14). 

(9.29 i 

(9.30 1 

Except for the substit’ution sin e -+ 8, which is allowed in t,his order of approxi- 
mation, ($I.,“9 j coincides with the classical Fraunhofer diffraction I)attern of a. 
circular disc or apert’ure (26). The other term gF may bc called the Icock correc- 
Lion t’erni ( N”; j. 

The forward scattering aml)litude is obtained by setting e = 0 iu (9.28) : 

f”(k, 0) ,z .‘&u2( 1 + wp3 + . . . ), (9.31 I 

where C is given by (7.421 and (7.43 ). This result also follows from (8.29), by 
taking z :,> pa. 

The t’otxl cross section is obtained from (9.31,) with the help of the ivcll- 
known “optical theorem” 

IJ = A? hlf(/i, 0) = 7ra2(2 + 1.9w3p + . . . ), (9.32) 

ii-here we have mployed (7.43 j. 
This result was first, derived by Rubinow and Wu (20). Higher-order tertus 

in t.he exp:tnsiou in powers of @-*I3 have been computed by Wu (24) aud by 
Beckmann and Franz (28). They involve the coefficientms :lil, defiued in (8.27). 

If e cc 8-l 3, we may employ (8.42) with s = 0. The result is 

. [ .voJo(fie) - nf, 
P 

0 
li3 i, 

eJ,(pej + 
. . . I! 

1 Jl(w =- iku2 1 2 3 80 + 2”‘Rp-2~3[i.9923Jo( pe) 
+ o.6706p1’3eJl(pe) + . . .I 

1 
(e -cc P), 

(9.33) 

where we have employed (8.28). This is also a limiting form of (8.43) for 1‘ >> pa. 
The first term of (9.X), which gives rise to the well-known forward diffractiotl 
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])eak, domiuates throughout the regiou 0 << fl-I’“. The corrections are of the 
order @“B. 

If .4 becomes >>/P’3, we must recover (9.3). To show this, let us rewrite 
F(0, t, V) as follows (cf. (8.1-l) and (8.21)): 

s 

cc 
-9y0, 1, v) = Ai( .c) 

e o Ai(xe-2m/“) Jo(v - te 
-i*l3x) (IX 

m  Ai 
(9.34) 

Ai(xe2’*,3) Jo(v + tx> dx. 

Let us make the decomposition: Jo = [I?$” + Hr’]/2 and substitute x = e--2i*‘3~’ 
in the first integral in Hi”, employing also the relation (D.3). 

The result is 

2e?=‘3F(O, t, 2)) = l- At;;;2i*,3) Hf’(v - feP3x) d.r 

m Ai 
+ d Ai(xe2i*‘3) 

Hf’(v + ts) dx + s, A;;$j,3) Hf’(v + tx) czx (9.35) 

--in/3 

++s 

&2i”,3 

HP(z) da, 
v 

where I? is the path of integration showu in Fig. 10. This path can be closed at 
infinity, reducing the integral to a residue series 

(9.36) 

where -xn are t’he zeros of the Airy function and we have replaced I#’ by its 
asymptotic expansion. 

Since v >> t >> 1, the H au e k 1 f unctious may be replaced by their asymptotic 
expansions also in t’he other terms of (9.35). By part’ial integration, we find 

s &zini3 
fp’(r) &. = p/4 2 0 TV 

112 
0 - 2”[1 + o(v-“)I. (9.37) 21 

The asyrnpt,otic expansion of the second term of (9.3.5) can also be obtained 
by partial integration. The first term has a saddle point at 

2 = p3t2/4, (9.38) 

as can be verified by replacing the Airy functions by their asymptotic expansion 
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(D.4). In addition to the saddle point, we must take int’o account the contribu- 
tion from the lower limit of integration. The result is 

s 
O” Ai p ( v - &y.) &. oAi(5e-2i”i3)o 

m Ai(z) 
+ .6 Ai(xe”-ir’3) 

Hp(v + tx) dx :z ey” eiTi6 exp (--iv + ;S) (9.39) 

+? 
0 3-V 

“2ye,,[-i (v + r)l+ ._. , 

where the first term represent,s the contribution from the saddle point and t,he 
second one those from t’he lower limits of integrat’ion. 

It follows from (9.35) to (9.39) that 

F(O,t,v) :,i(:;~~exp(-i~+~)-f(~~“cos (v - 7) (g40) 

ir/ 12 

-~ 
(l7rv,1,? n c 

exp (iv + iekni3tzn) + 
[A’( - x,>y 

.-. (u>>t>>l). 

Substituting this result in (9.28) to (9.30)) and replacing Jl( 00) by its asymp- 
totic expansion, it is found that the main term of this expansion is cancelled by 
the second term of (9.40)) leaving us with 

fo(k, e) c:: -i(&rexp{-%/?[i - k (5)1) 

+ e-5ia/12 2” $ 

0 

116 (9.41) 
1 

c -7- (e >> PP3). 
exp (iLO) 

(B sin 19)“~ n [Az’( -2,)12 

The second term is identical to the residue series involving 60’ in (9.5). The 
exponent of the first term is the expansion of -2$3 sin (0/Z) up to t,he term of 
order pe3. Thus, in hhe domain where /3e3 >> 1 but the next, term in this expansion 
can be nleglected (and at the same time B/sin 0 M l), the first term of (9.40) 
coincides with the main term of the reflection amplitude (9.4). 

Thereftore, (9.10) goes over smoot,hly into (9.3) when 0 becomes >>flP”3 but,, 
just as was found in Section VIII, the Pock functions cannot be employed for 
too large values of 0. Their angular domain of validity is just sufficient to make 
a smooth transition. 

The transition from t.he forward diffraction peak to the region of geometrical 
reflection takes place in the domain 8 ,- p-l’“. In l.his domain, we must, employ 



(0 5 e 5 P-‘/~), 

where, for 0 - @-1’3, the l+‘ock-type functions should be computed by nunlerical 
methods. Some related functions have already been tabulated (22, 29), but 
t,here seem to exist no tables for those appearing in (9.42). 

C. THE NEIGHBORHOOD OF THE ~~c!Iw~~RI~ I)IRECTION 

There remains to consider only the neighborhood of the backward direction, 
i.e., according to (9.9), the domain 

e=a-c, 6 5 P. (9.43) 

The expression for /‘(IL, 0) in this domain ntay be obtained similarly l;o (,9.8), 
by substitut#ittg (9.7) in (6.30) and (6.:35) : 

f(k, ej = j,(k, 8) + fres(k, e), (9.44) 

where 

(9.46) 

The path of integration in (9.45) is the ulq)er half of the path I” shown in 
lcig. 12. Actually, (9.45) can also be obtained from (9.8), by taking the integral 
along the symmetric path I” and then applying the same transformation that 
led from (6.30) to (6.31). 

Substituting (2.18), (X16), and (9.43) in (9.46), and employing the uniform 
asymptotic expansion (C.11)) me get 
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\vhic*h is :~lso ;I lin~iling KLW of (6.38 ). III l):trticwlnr, if t >> fi-‘, ne ul:iy rrl)l:~(*e 
./,,iX,,t 1 by its asynil)lotitr cxl~ansiorl and (9.17) goes over ill10 (9.5), :LS n~np 
PiWil~ hc vcrificd. 

III (9.-G), WC nwy e1111)Ioy the c~spansion (6.1-l), which retllaitts v:tlid eve11 
for 1 A 1 << $. Awording to (9.21, the main c*ont,ribution to the ill(cgral :wisw 
fro111 the neighborhood of the lower limit, i.c. front the domain 

1 A 1 ,< /p@. (9.48 i 

Thus, WC (WI expand the csljonent and the ot,hcr terms of (6.14) in po\vcrs of 
X,/p, with the following result 

i i X4 
e -iqg;~)(p)iH;“(B) = ie-2’? 

exp ( -iA’lP) 1 + 4T - m + . . . 
( > 

, (9.49 ) 

whcrc WC hnvc keJ)t all correction I ernls up t.o the order b-l, according to (9.48 ). 
On the other hand, Px--1,2( --OS @) = Ph-i,z(cos E) and, according to (9.4:~) 

and (9.18 j, the relevant portion of the domain of integration corresponds to 
/ At 1 5 1, 50 tl la we may em~)loy the expansion (C.9). t 

Naking tlw change of variable apl)rolwiate to the steepest dcswnt path (csf. 
Fig. 12) 

we finally get from (9.45) 

X ~mexp(--z?).13(w~) tan (acrx)z” t1.c - sin”; 

xb 1 
exp( --z”)J2(w.c) tan (BCU)L d.r: + - sin” i 

2W 

(9.51) 

xl- exp (--z”)J~(wx:) tan (,Ta.~j f1.c + O(p-“) , 1 



w = Q’r’4p’i2 sir* ( t 2) = 20~ sill ( E, 2) ( 9.5” ) 

and the upl~er linlit of integratiou has hcen extended to 33, since large values of 
.r give no significant contribution. Sotc that / w 1 5 1 according to (9.33). 

The evaluation of the integrals appearing iu (9.51 ) is taken up in Appendix F. 
The result is given by ( 1’.13). Expanding w2 = -4$ sin’ E,‘Z in powers of E’ aud 
taking into account’ (9.43 ), we finally get’ 

f,(lz, 7r - t) = -;exp[-W(l- ;)][l+$-$+OCk-~q (g.53) 

(0 5 E 5 p-l’*). 

As may readily be verified, this result coincides with the expansion of (9.4) 
in powers of c*, within the domain t 5 p?. Thus, (9.4) is uniformly valid up 
to 0 = T. This had often been assumed in previous work, on account of the 
regularity of (9.4) up to 0 = T. Obviously, however, such regularity constitutes 
no proof of t’he validit)y of (9.4), since the asynlptotic expansion (C.7)) employed 
in its derivation, is no longer applicable in this domain. 

Since (9.47) also remains valid for c >> flP1, we couclude that, 

unifonuly throughout the whole domain 

p-“” << e 2 7r. 

(9.54) 

(9.55) 

Together with (9.42), this determines the behavior of f( li, e) for 0 _I e _I r. 

D. DIRECT TRANSFORMATION OF THE SCATTERIXG AMPLITUDE 

The expressions for f(k, 0) employed in the above discussion were obtained 
by lett,ing r -+ ~0 in the representations previously derived for fi(r, e). The 
advantage of this method is to make clear the connection between the behavior 
of the wave function in the near and in the far regions, as well as bhe physical 
interpretat,ion of t)he various terms. However, one may ask whether it is possible 
to bypass the limiting procedure and to derive the same results directly from 
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the part,ia-wave expansion of f( /c, 8)) 

.f(lc, 0) = 5 (2z;c l) [Sl(k) - llP~~cos e), 
z=o 

where S1 is given by (2.3). 
It is ~wll known (SO) that Watson’s transformation, ill the fornl usually 

al)J)lied tso Yukawa-tyl)e potentials, cannot he applied to (9.X) in the case of a 
cutoff Ilolentinl (including, in particular, the case of a hard sphere). This is es- 
sentially due to the asymptotic behavior of the N-function as / x 1 _. ‘CC, 
j arg A 1 -- a,‘2. 

1lodified versions of Watson’s t~ransforrnat~ion have hecn employed for this 
~mrpose (31, 33,“). However, t,he proposed modifications still lead to singular 
integrals,’ so that the difficulty is not ovcrconle. 

It will now he shown that it, is indeed possible to derive all the representa- 
tions for j( k, 0) cml)loyed above directly fro111 (9..% ). 

L($ us start hy applying Poisson’s sum formula (2.12 j : 
m 

j7 it, ej = F C (- 1)” 1” ti - x(x, k~l~A--l..s~~os f~:)~*im=b dx, i9.57 ) 
Lm cc 0 

whew X(X, k) is given hy (3.1). It, follows from (2.15) that 

X(--X, Ii) = ezi”‘S(X, k), (9.58) 

SO that, making X + --X in the sum from w = - 1 to - 30, w-c get 

f(k, ej = i go ( -1 Y (se re2irx - so, k)lPA-1;?(cos o)etimnXX ClX 

+ l- [1 - X(X, lc)lPA--1~2~cos o)eZirn% ClX 
i 

(9.59) 

. 

2 irX e - S(X, k) = “PJ-x(~)/H~“(p). (,9.60) 

According to Appendix A and (C.S), the integrand of the first int,cgral in 
(9.59), for all 111 2 0, goes t’o zero at least exponentially for / X 1 + 130 in t,he 
second quadrant. Thus, we may shift t’he path of int,cgration to the Imsitive 

imaginary axis, from im to 0. Writing 

PiaX e - ,)‘(A, kj) = p - 1 + 1 - S(X, k) 

5 Cf. Eqs. (X1-(37) and t’he related discussion 011 p. 328 of (31) and Eqs. (5)-(g) :tlld (48) 
of (32). 
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we get’ 

where 

fofo(li, 8) = i ,~ o- [I - 8(X, k)]Ph--IJcos 0)x & 
s 

i O 
(9.63) 

-- x; 
s 

X(X, k)Z’-l,a(cos 0:)X clX + A1 , 
zcc 

A = g 

s 

O eZirA 
1 /i im 1 + @“A 

P~--1;:!(cos e)x A, 

[l - S(A, Ic)]P~-~,~(cos e)e2im*xA A, 

(9.G-1) 

(9.65) 

and C is the path shown in Fig. 13, going front ix to 0 and from 0 io cc. 
It follows from Appendix A that t,his path may be closed at, infinity in the 

first quadrant, so that’ 

,Tres(k, ej = ; m$l (-1)” gl LY, exp (Bi~~zaA,)PA,-li?(~~~ e), (9.66) 

where X, are the poles of S(X, k) and r, are t’he correspottdittg residues, given by 
(3.14). This corresponds exactly to (9.11). 

On the other hand, we may rewrite (9.63) as 

.l;(k 0) = sol + fu2 + fo3 , (9.67) 

where 

(9.68) 

and 

(9.69) 

The first integral in (9.68) may also be taken along t’he path C’ from n1 m to 
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ImX 

l3c:. 13. Paths of integration in the X plane. X X X-Poles of SCX, PI. 

/? shown in Fig. 13. Since t,he nmin contribution to both integrals arises from the 
lleighhorhood of x = /3, where we may employ the appl’o?iimat,ioll.~ (7.33) and 
(7.3-l), n-e see that, (9.68) corresponds to (9.13). Sinlilarly, (9.69) correspollds 
to (9.19). Just ;is in (9.X), it can he shown t,hat. 

( 9.70 ) 

so that the caont’ribution front AI which is indel)endent of a, would be included 
in the c~orrec+tion term of order /3” in (9.37 ). 

Thus, I 9.62) leads to the same result,s as ( 9.10 j and is the alqwopriat e q)litting 
off(k, 0) in the donlain 6’ 5 p-1’3. 

l\ow let us consider t.he domain 0 >> PM”“. In this case, the int,cgrals cont,aining 
Qf~12(co:; O) in (9.63) can also be reduced to residue selk. For this purpw, 
let us add and subtract, t,he (convergent ) int.egral 

alld rcwriltc (9.62) to (9.65) as follows: 

(9.71) 

where 

,fres being given by ( 9.66), and 
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+ ; l- [l - S(X, WI&?,, (cos 0)x dX + Al. 

(9.73) 

From t’he discussion given in connection with (9.8) and (9.59) and from (C.7) 
it follows that the path of integrat,ion in the first int,egral of (9.73) may be de- 
formed away from t’he imaginary axis into the second quadrant,, so as to coincide 
with the upper half of t,he path r’ in Fig. 1 2. Similarly, according to Appendix 
A and (C.7), the path of integrat’ion in the second integral may be deformed 
within the region A of Fig. 12, so as to coincide with the lower half of I”. This 
leads to 

f*(j$ fj) = -4 
s 

-** 
k .?co 

S(X, k)Q&z (cos e)x dX 

~ tl Q&z (c0s e> + &%&0se) - 2 & s[ 1 
(9.74) 

i -- Px--1,2( cos e> x dk, 

where the integrals are taken along the path I”. We have also made X ---f --X in 
the integral of Q& and employed (9.64) (with the path of integration shifted 
to I?‘). 

It follows from (C.5) and (C.6) that the expression within square brackets 
in (9.74) is identically zero, so that we are left with 

f,(k, eJ = -4 
s 

-‘m 
k ICC 

S(X, lc)Q:t?~,z (cos 0)x dX, (9.75) 

in exact agreement with (9.8). Since (9.72) also corresponds to (9.5), we see 
that the splitting (9.71) is equivalent to (9.3). 

Furthermore, just as in (9.45), we may rewrite (9.75) as 

f,(k, e) = -; 
s 

zm X(X, /c)P~-~~~( --OS e) tan (9X)ePX dX (9.76) 
’ 0 

and, with the help of the identit’y (6.33), we may rewrite (9.72) as 

fredk 0) 

= - (24@$ (-l)‘.f& d-, exp [i(2m + l)aX,]Px,-I,?( -cos O), 
(9.77) 

which, according to (2.18)) is equivalent Do (9.46). 
The result’s (9.76) and (9.77) remain valid up t#o 8 = a and correspond to 

those employed in (9.44). In this form, the splitt#ing (9.71) may be employed 
for RP3 cc e 5 a. 
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In conclusion, according to (9.62), (9.64), (9.66), (9.67) to (9.69), (9.71), 
(9.76), and (9.77), the modified Watson transformation may be expressed as 
follows : 

.f(k, e) .= -; s,, S(X, k)Px-1,dcos e>x cix + ; Jy [l - S(X, k)] 

>( &l/z(cos e)x dX + ; . ~PP\-l,r!eos e>x dX + ; d 1 pi;L,, (9.78) 

.A Ph-ldcos e)x dX + ~mifil(-lY 2 Xnrn exp (2i,)naX,)PX,--1!2(~~~ e), 
R=l 

where t)he pat#h C’ is shown in Fig. 13, and 

f(k, 8) = i k lo X(X, k)Ph--1,2(-~~~ e) t,an (7A)e-% dX 
‘SC 

- ygo (-lYngx 

(9.79) 

,r, exp M2m + lhLlP~,--112 (-cm 01, 

where the integral may also be expressed in the equivalent form (9.75). 
Bot#h of these representations are exact, and their terms have a direct physical 

interpretation, as discussed above. They may be employed to obtain higher- 
order correct,ions t.o the results derived in the present section: (9.78) should be 
employed for 0 5 e 5 fl-1’3 and (9.79) for p-“3 << 0 5 ?r. 

X. CONCLUSION 

The main results obtained in the present work may be summarized as follows: 
(i) The high-frequency behavior of the wave function in scattering by a 

totally reflecting sphere may be complebely determined, both in the near and in 
the far regions of space, by means of a modified Watson transformation, based 
upon Poisson’s sum formula. Each t,erm in the transformed seriefi has a direct 
physical interpretation. This procedure has the advantage that it does not require 
a reevaluation of the whole residue series in going over from t’he shadow to the 
lit region, but only of t’hat part’ of the lowest-order t)erm that would not corre- 
spond to a rapidly converging series, t,hus showing clearly the conne&on be- 
tween shadow and lit, region. 

(ii) It is necessary to apply different representations in the forward and 
backward half-spaces. It, is already clear from t~he singularity of Px-~,~(s) at 
x= -1 that one cannot have a single representation for all values of 0: one 
needs a representation in terms of P~-~,~(cos 0) near 0 = 0 and one in terms of 
Px--IJp( ---OS 0) near 8 = r. The present, t,reatment is based upon the int’egral 
representations (2.34) and (2.35) of t,he primary wave. In the forward half- 
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FIG. 14. 1)ivision into regions (the angles are greatly exaggerated). The separatimi be- 
tween regions is indicated by the broken lines. 

space, we employ (2.16) and (2.17); in the backward half-sl)acc, WC must 
employ (6.29)) (6.30) and (6.34). 

(iii) A rigorous proof of Watson’s tjransforrnation is based upou a study of 
the behavior of the integrand for 1 X 1 + 30, arg X -+ n/2, as well as of the 
asymptot,ic behavior of the poles and their residues. It follows from this discus- 
sion that the residue series (4.15) converges in t’he whole forward half-space 
0 5 B < ?r/2, but it is only useful in this form in the domain where it’ is rapidly 
convergent, i.e. within the shadow region. This happens in the domain 1’ << 
p”3a, o,, - e >> @p1’a, where eu = sin-’ (a/r) is the shadow boundnly angle. This 
domain, which may be called the deep shadow region, is represented by the 
shaded area in Fig. 14. 

(iv) The wave function in the deep shadow region is given by (5.7), which 
represents a superposition of “diffracted rays” arising from the surface waves 
associat.ed with t.he poles of t,he S-function in the complex angular nlonlentunl 
plane. These poles do not show the typical Regge behavior associated with 
Yukawa-type potentials. The physical interpretation of these t’ernle is in agree- 
ment with Keller’s geomebrical theory of diffraction: they give rise to an es- 
ponentially damped wave function in the angular variable. However, this 
interpretation can be applied, at a given frequency, only to the 1owestLorder 
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~)oles, a~td loses it,s validity where the datnping within one wnvelengt,h beconw 

npprcc*iablc. The higher-order poles, however, give a negligible contribution. 
The esl~ottctttinl datnl)ing in t#he deep shadow should be contrasted with t,hc 
tttuch weaker dutuping fouttd in the case of a circular disc : the shadow of t)he 
sl)here i-: IHLWII darker t,hatt that of the disc (27, 1). 463). Physically, the reasott 
for this result, is that, t,he intensity thrown into the shadow by diffraction at the 
ctlge of the disc is much greater than t*hat, due t)o diffract’iott around a curved 
surf:tc*c. C%ts;aic~nl diffraction theory, which I)redicts the san~e behavior for the 
.q)hcrc and the disc, fails in this donmitt. 

( v ) 111 the lit, region, sufEciently far fro111 the shadow boundary 
(0 - o,, >> @-I”), t#he WKB expansion for the wave function has hcett confirtntd 
up t#o the second order. The expression (6.23) for the reflect’ed wave is valid 
both in the forward and in the backward half-space, although the derivation is 
differett*L in the two cases. In t.his region, we also find thr continuation of the 
surface waves, but they are masked by the much greater contribution from the 
itGdetlt. and reflcct)ed waves, except in the itntnediate vicainity of the shadow 
bouudary. 

(vi ) Ot1 the surfme of the sphere, Kirchhoff’s approximation (7.1)-(7.2 j for 
the ttonttsl derivat.ive of t#hc wave function is accurate, except, within the penuttt- 
bra region, j I9 - (n/2)1 5 p (Kg. 14). The behavior in this region is de- 
scribed by Fock’s fuuction (7.11)-( 7.13), which interpolates smoothly between 
the values on the lit. arid ou the shadow regions. However, it cannot, be employed 
too far beyond the penumbra. The penuntbra or, equivalently, the corresponding 
:mgul:hr tnottleututn domain 1 X - p / 5 p- ‘Ia, is responsible, in the sense of 
Huygens’ T’rinciple, for t.he main correct’ions to classical diffraction theory. 

(vii) The neighborhood of the shadow boundary, 1 0 - 80 1 << pm”“, at, 
distartccxs /3 -l”a << x << pliaa, is denoted as Ihe Fresnel region in Fig. 14. In this 
region, the main t.erm of the angular diffract.ion pattern corresponds to t.he 
classical Frcsttel pattern of a st,raight, edge, with stttall corrections, representing 
the effec*t of the curvature of the sphere (cf. (7.44) 1. One of these corrections 
is the shift of the shadow boundary, denoted by s in Pig. 14. It is given by 
(iA), in agreement wit,h a cottjecture made by Rubinow and T<eller (21). 

The :;olutiott in t,his region is still not in agreenmlt with the result given by 
classical diffractmiott t*heory, which would be analogous to t,he Fresnel pattern of 
:L slit, lather than an edge. In fact’, it would contmain, in addit’ion to (7.28), a 
contribution from the diametrically opposite edge, corresponding to \kh”‘, which 
is actually replaced by a rapidly convergent residue series (cf. (7.21)). 

(viii ) In the Fresnel-Lotontel region, 13 5 OO , fi1’3a << 1’ << /3a (I?ig. 14)) the 
main term of the wave function corresponds to Lotnmel’s classical solut,ion (8.17) 
for t’he diffraction of a plane wave by a circular disc. The mait correct,ion term 
is given by the Fock-type fuuc*tiorr (8.141, which also gives rise to a smooth 



transiliou to the deel) shadow and IO the lit region. *4long 111~ axis, dtart,ing at :I 
dist,ance z - ~“~a, we find the well-kno\sn Poisson spot, whicbh ac+u:tlly ~orre- 
spends to a COIN (Fig. l-2) of angular ol)cniug ,-p-l , aurrouuded lyy difl’ra~tiotr 
rings (cf. (8.43) ). 

(ix) In the Fraunhofer region, 1’ >> pa, the wave function is given by (9.1). 
I?‘or p-l’3 << 6 5 P, the scattering amplitude is giveu by (9.2)) the ruaiu term 
of which corresponds to geometrical reflection. For 0 < b-l.‘“, the amplit’ude is 
dominated by the forward diffractiou peak (cf. (9.33)), which correspouds t.o 
the classical result, for a circular disc. In t#he transition domain B I~ p-““, we have 
to employ (9.42)) which again may be contiuued smoothly up to the region of 
geometrical reflection. Higher-order corrections may be obtained from the exact 
represent,ations (9.78) and (9.79), which result from applying the modified 
Watson transformation directly to the scatt’ering amplitude. 

(x) Pock-type functions such as (7.13), (7.39), (8.14), (8.20), aud (9.34) 
play an important role in linking the domains of geometrical opt,irs and classical 
diffraction theory. In view of this role, which probably is not rest,ricted to the 
present example, but, is of more general validit’y, it would be desirable to COII- 

struct tables and graphs of these functions. Only iu a few cases is this material 
presently available. 

Possible applications and exteusions of the present treabuleut iuclude the 
l,roblem of a transparent sphere (square well potential in quant.um mechanics), 
which will be discussed in a subsequent paper. 

APPENDIX A. ASYMPTOTIC BEHAVIOR OF THE CYLINDRICAL 
F‘lrNCTIONS 

The asymptotic behavior of the cylindrical funct’ions Z,(z), s > 0, in the 
coulplex x plane may be derived from the formulae given by Watson (25, p. 
262). The results are graphically presented in Fig. In. - ’ The notation is as follows: 

A(X, 2) = (2/7#*(X2 - x~)-“~, (A.1 > 

a(x, 2) = (x” - x2p2 - x 111 
[ 

;+ 
(1” - x2)‘/2 

2 11 (A.2) 

where the branch of (X2 - z’)“~ to be taken is specified by t.he couditiou 

(X2 - x’)l” -+ X = / h 1 exp (ip) (-T < p 5 7r) for 1 X j + co. (A.3) 

Thus, 

2 0 
l/2 x 

A+- , 
ex 

TX 
e”+ x 

0 
for lXj*oo. (A.41 

The asymptotic behavior of H:” (z) , Hf’ (x) rhauges (Stokes’ pheuon~enou) 

6 Similar figures appear in (33). However, they contain several mistakes 
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e(Q-irr)l)=O Jx = $.ea 

qe-3W2 q- -r/2 

Frc. 15. Asymptotic behavior of the cylindrical functions Zh(a) in the index plane 
(.c > 0). The zeros of H’:‘(s) are asymptotically located on cwves hl and h-1 ; those of 
H’;)(x), on h, and h-, ; those of Jo, on j and j’. 

across c’ertain branch lines, shown as thick lines in Fig. 15. For H:“(x), we have 
the curves hl (Re cx = 0, Im X > 0) and h-, (Re (CX - GA) = 0, Irn X < 0). 
These curves are symmetrical with respect, to t,he origin and the zeros of HP’(z) 
are asympt,otically locat’ed on them. The curve h1 cuts the real axis at, A = CC 
at an angle of r/X The tangent t.o this curve tends t.o the vertical dire&on for 
/Xl+. m. Asymptotically, the curve approaches X = gI x 1, 7 3 -a/2, where 
c and 7 are defined by (3.26) and (2.27) with p replaced by x: 

For H:?‘(J), we have the branch lines h% (Re CY = 0, Im X < 0) and h-2 (Re ( cx 
+ irk) = 0, Im X > 0), which are complex conjugate to hl and h-1 , respec- 
t.ively, and where the zeros of H?‘(Z) are asymptot’ically located. In addition, 
we have the portions of t,he real axis denoted in Fig. 15 by j’ (from - x to -x) 
and j (from -.x t,o z), where the zeros of Jh(x) are located. 

These curves divide the X plane into 5 regioq A to E in Fig. 15, and the asymp- 
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t,otic behavior of H:“(L), H?‘(X), Jh(.r), and J-X(,X’) in these rctgiotts i,q showu itt 
fihis figure. -Note that 

in all regiotis. 

JX(S) + (2aX)-““(,a.rl’2X)h (1 x 1 --f = ) (A.6) 

For each funct~ion, there is a domaitt where it tends io zero for 1 X 1 + z, 
whereas it tends to infinit,y outside of lhis domain. For Jx(x), this dotuaitt is 
region A. For H:“(X), it is the domain between 1~~ and the curve X = -u/ h 1, 
7 --f -3,: 2 in the lower half-plane. For H?‘(S), it is the dotuain het’wectt ht 
and the curve X = u/ X 1, 7 + &r/2 in the upper half-plane.’ Finally, &(a) 4.0 
in regions C and D. 

These results have to be modified in the neighborhood of each of the branch 
lines, where t,he two representations for t,he same function on different sides 
become of comparable order of magnitude. We then must take for the function 
t,he sum of the two representat’ions. This is indicated by the shaded regions in 
Fig. 15. 

Thus, wc have 

(A.71 H?‘(a) e 2AeiJi4 sinh in AB, 

H:“(x) :z -2Aexp(-ink--iq)ainh(a-Ch+ia) in DE, (A.81 

HP’(x) :z -2.A exp(inh + i$)sinh(a - iaX - ii) in BC, (A.9) 

H?‘(X) E 2AeLini4 sinh 
( > 

QI + i i in EA. (A.10) 

What is t,he width of the shaded regions? In AB, for inst.ance, we have 

H?‘(z) ,Z A(e” - ie-“), 

while outside of AB one of the two terms dominates, so that exp (21 Re a! 1) >> 1. 
Thus, the boundary curves of AB, shown by broken lines in Fig. 15, can be de- 
fined by 

Re a = AC, (A.11) 

where C is a constant, such t’hat, 

e2’ >> 1, (A.12). 

i.e., e W-2’ may be neglected within the required degree of approximation. 

7Franz (5, p. 36) incorrectly states that E and B are the domains where H’:‘(z) + 0, 
H,$ (2) + 0, respectively. 
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Asynll)toticaally, with x = (~1 X 1, me find ihat (A.ll) corresponds to 

where o ;.uld 7 are given by ( A.5 ). Thus, the angular width of the region ilR is 

At = 2c’;I X 1111 (21 X j,‘er) (Al-r) 

and the correspotlding arc length ! X iA6 tends to zero like (In 1 X j)-‘. Sinlila 
results arc valid for the other shaded regions. 

It, Inwt, be noted that, due to our choice of the phase in (A.3), d goes over 
into -rl and the phase of 01 changes by P~PX on crossing the line j’, so that,, in 
spite of appearances to the couimrary, t,he representations for H:“(x), E&?‘(x) 
aud Lx(~) given in Fig. 15 are continuous acrossj’, while that, for Jx(.r) changes. 
In Imrt.irular, on .j’ itself, wit,h X = -p, we find 

L,(r) :2: A(p, x)(sin (np) exup [--a(~, s)] 

+ J,i ~0s (a~) esp [a(~, x)]j (p > r), 
(A.15) 

where B and (Y are given by (A.1) and (A.2). Thus, Jk(lr) has infinitely nlany 
zeros on j’, located asympt~otically very close to the negative integers. 

The asynllhotic eq)ansions given in Fig. 15 should be employed for 1 X / >> t. 
I’or srldlcr values of j X 1, additional regions have to be considered (25). We 
shall require only a few additional results. 

III region BE, iu the neighborhood of the real axis, we may employ the Debye 
asymptotic expansions 

jYp’(x) = (~/,jl!yg - ,2,-l/4 

(A.16) 

where the upper signs refer t,o H:“(x) and the lower ones to Hy’( .r j, and 
(x2 - w1’4 > 0,o < cos-l (X/s) < ,/a for --z < x < d. 

These expansions fail in the neighborhood of X = fx. If 1 X - .r 1 becomes 
comparable with j X jl”, we must, employ t#he expansions (S& pp. 367, 446) 

H:‘.2’(~) = 2 exit (~iK/3)(2//X)“3Ai[esIt (&Sr/3)(2/A~““(h - .r)] + 0(X-‘), 

(A.17) 

Jx(z) = (a/X)‘!“Ai[(3/X)““(X - x)] + 0(x-l), (A.18) 

where A,i(z) denotes the Airy function, defined in Appendix D. 
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ReX 

FIG. 16. Division of the h plane into regions; q Region 1 q Region 2. The two regions 
overlap in the cross-hatched domain. The curves in broken line correspond to those of 
Fig. 15. 

APPENDIX B. ASYMPTOTIC BEHAVIOR OF g(x, & p) 

In order to prove (4.2), we note first that, according to (2.9) and (2.15), 

d-h P, PI = go, P, PI, (B.1) 

so that it suffices to study the asymptotic behavior in the upper half-plane. For 
this purpose, we shall subdivide it into two overlapping regions, as shown in 
Fig. 16. 

In region 1, we may rewrite g(X, /3, p) as 

go% P, P> = Wdm%) - fmwx(P)I. (B.2) 

Substituting Jx and Hr’ by their asymp totic expansions, valid in regions A, 
AB and B of Fig. 15, we find 

g@, P, PI = iA@, PMO, p)iexp b0, P> - 4% PII 
- exp L-&b P> + 4% ~111. 

(B.3) 

In region 2, g(X, fi, p) may be rewritten as 

g(X, P, P) = 2ei”‘[H:“(p)J-x(P) - J-A(P)H:“(P)I. (B-4) 

Substituting Hr’ and J-h by their asymptotic expansions, valid in regions C, 
BC, and B of Fig. 15, we are led again to the same result (B.3). Taking into 
account (A.4)) this yields 

03.5) 

for 1 x 1 -+ 00 in the whole upper half-plane. It then follows from (B.l) that 
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the same result is valid in the lower half-plane. This proves the validity of (4.2) 
in the whole X plane. 

APPENDIX C. ASYMPTOTIC BEHAVIOR OF THE LEGENDRE 
FUNCTIONS 

The functions Q?‘(cos 6) and Q!,“‘(cos 19) employed in t,he present work are 
defined by 

Q!‘,‘) (cos 19) = ; 
[ 

P, (cos 0) f 2 Qy (cos 0) , 1 (Cl) T 
where P, and QY are Legendre functiorls of the first and second kind, respec- 
Gvely. We have the following relations (36) : 

P,(cos e) = Q!“(cos 0) + Q?‘(cos e), (C.2) 

Q$( --OS e) = i?XQ&2( cos e), (C.3) 

QPlls( --OS e) = -~PQ&(cos e), (C.4) 

.Ph-ll2( ---OS 0) = ie-iff’hPx-li2( cos e) - 2i cos (TX)Q&,( cos e), (C.5) 

.Px-~,s( -cos 0) = -iei”xPx-l,2(cos 0) + 2i CDS (~X)Q&(cos e). (C.6) 

Both Qp1,2 and Qi!?l,, have poles at the negative half-integers, which are can- 
celled in Px-~,$ . 

If E 2; 0 5 ?r - E, 1 X j >> 1, 1 X IE >> 1, the following asymptotic expansions 
arc valid ($5, pp. 237, 240): 

Q:?&), (cos e) = exp wxe - d4)1 
(2~1 sin e)l’2 

1 + i cot e 
7 -I- 0(x-“) , (C.7) 1 

px-112 (COS e) = --- ( > 
l/2 

. [,0+e-$+--- c~esin(hB - $) + O(A-‘)I. (‘.‘) 

If 0 2; 0 5 E, / X [E 5 1, 1 X 1 >> 1, we may employ the expansion (35, p. 243) 

PA+ ((t0s e) = Jo(u) + sin’: JI(u) i Js(~) - J2(u) + 2~ 1 cc.91 
where 

u = 2hsini. (C.10) 
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A unifornr asyniptjotic esl)ansion of the Legendrc funct,ion8 has been given by 
Szeg6 (36 i : 

( > 
l/2 

b12 ( cos e j  = +& 

4 

. 
[ 

Jo(M) + ; (e cot e - 1) J* + O(K)]. (c.ll) 

This reduces t’o (C.8) when 1 X 10 >> 1 and reniains valid for 0 4 0. 
In Section IX we nrade use of the inequality 

1 Pip--1,2( cos e) 1 5 (COS e)-“” exp (7d2) (p 2 0,O 5 e < 7r/2). (C.12) 

To prove this inequality, we start front the integral representation (26, p. 387) 

P,(c0se) = ’ 
s 

OD 

r(Y + 1) 0 
exp (--t cos B)Jo(t sin 0)t” clt 

(C.13) 
(0 < 0 < r/2, Re (V + 1) > O), 

where l’(x) is the Ganuna function. It follows that 

~~~~~~~~ (COS e) I 5 1 m 
s I UiP + %I I 0 

exp ( - t cos e) t-l” dt 

= (COS e)-liz , r(zr,‘+“~, I = [*-J2~~&(01e<$ 

which proves (C.12). 

APPENDIX D. THE AIRY FUNCTION 

The Airy function is defined by 

Ai = 3”” 
s 

- cos (t” + 31’3Xt) a. 
7r 0 (D.1) 

It can also be expressed in ternrs of Bessel functions of order ? $ (34, p. 446). 
We have 

W[Ai(z), Ai(~e*~~“‘~)] = eFfi”‘6/2n, 

where W denotes the Wronskian. Also, 

Ai + e2i4d3Ai(Ze2id3) + e-2i"/3~,qze-2i"'3) = 0. 

(D-2) 

(D.3) 

The asynrptotic expansion of Ai for large 1 x 1 is given by (34, p. 448) 

* Cf. also (S7). However, there are several mistakes in the expansion given in this refer- 
ence. 
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(largxl < a), (D.4) 

&4i( -2) x T-1/2p [l + ois-2,1 - cos { + -1 O(( ) 
( -> -’ 1 (D.5) 

(/arg z/ < 2nj3). 

where 

( = 33/p2. (DA) 

The zeros of the Airy function are all located on the negative real axis. If 
-I,, dcnol es the nt.h zero, we have, for large 7~ (34, p. 450), 

.,,1~~(,-31’“[l+oin?,l (?%>>I), (D.7) 

,Ji’( -x,) ;y ( -l)n--1H-1’2 (n >> 1). (D.8) 

The first, five values of xn and the corresponding values of ,4i’( -x,) are listed 
in Table I (34, p. 478). 

APPENDIX IX. THE LOMMEL FUNCTIONS 

Lonln-tel’s functions of two variables (25, pp. 537-550) are defined by 
2s--Y+2 

VJU., v) = cos J2m--v+2(2)). (E.1) 

In l)articular, 

I’“(U, u) = .I~~[JO(U) + cos 211, Vl(u, 2.4) = -?,/z sin 91, 

V”(U, 0) = 1, V*(u, 0) = 0. 

The following integral representat>ion is valid : 
v-l m 

V 

(E.3) 

(E.3) 

VJU, v) + 2Vv-1(74 VI = -uy-y 1 
s 

Jl--y(vt) exp [iu(l - tz)/2]t-Y+2 dt 
(E.4) 

(,u > 0, v > 0, Re v > 9;). 

In particaular, 

s 
13 J(,(vtj exp (iut”/2)t dt = (i/u) exp (iu/2)[V0(u, v) + iVl(u, v)]. (E.5) 

1 

For large ] u j and fixed v and v, we may employ the asymptotic expansion 

Vy(u, v) y-t ( -1)“(U/U)Y+2mJ_y_,,cv). 03.6) 
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TABLE I 

THE FIRST FIVE ZEROS OF Ai 

?I .tn di’(-X”) 

1 2.33811 +0.70121 
2 4.08795 -0.80311 
3 5.52056 +0 .86520 
4 B .78671 -0.91085 
5 7.94413 +o .9473-i 

APPENDIX F. EVALUATION OF f,(k, ?r - e) 

To evaluate the first integral in (9.51), we may employ the expansion 
m 

which gives 

tan (7r(~2) = i + 2iC ( - 1) n exp (2i1~7ro1~), 
?&=I 

(F.1) 

s 

(0 m 
exp ( -22)J0(wz) t’an (7rc~)~ dx = i 

0 s 
exp ( -22)Jo(~zj~ tlx 

0 

+ 2g (-1)" lrn 

(F.2) 

exp (-x2 + ~~~~~cz.E)J~(ux)x dx. 

According to Weber’s integral formula (65, p. 393), 

s 

m 
exp ( -x2)Jo(wx)x dx = $6 exp (-w”/4). 

0 

On the other hand, by partial integration, 

(F.3) 

J 
(0 

exp ( -x2 + 2in7~~)J~(~z jz dx = - 
0 

(E’,4) 

so that, finally, 

s (0 
o exp ( -z2)Jo(~z) tan (~CU)X dx = + & + O(P-“1, (v’.sj 

where we have employed the well-known formula 

(F.6) 

It is clear from the above calculation that, since we are neglecting terms of the 
order of p-*, we may replace tan (?TCYX) by i in all remaining int.egraIs of (9.51). 
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To conqut,e these integrals, we employ Hankel’s formula (,25, p. 393) 

s 
m 

exp (-~~)J~(cdx)x~-~ CCC 
0 

-CO”\ _ 172 - 7n _ _ cd”\ (F.7) 

- 

where +~:a, b, z) is IGmrner’s confluent hypergeonletric function 
SuMituting the above results in (9.51), we get 

fr(k, iT -- E) = -- ie+‘j(l +&)[eqJ($) +A21 

+&exp($)@(-2,1,:) +tsin’iexp(+) (F.8) 

. [&+1,~) - %,(1,34 .,(1,2,$)] +w)). 

It follows from the definition of @(a, b, x) that 

a(-2,4= l-$+$. (F.9) 

On t,he ot,her hand, we have (58) 

q1, n + 1, x) = mzz-nY(7L, z), (F.lO) 

where y( n, x) is t’he incomplete gamma function, and 

( 

n-l m 

r(n, 2) = (n - I>! 1 - e-“mx; ) 

> 

so that 

(F.11) 

(F.12) 

Suhstit,uting (F.9) and (F.12) in (F.8) and takitlg into account (9.52), we 
finally get, 

f,(k, 7r - c) = -z exp ” (-2i4)[ 1 + 4 - g + o(g’> . 1 CF.131 
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